Menu
June 1, 2021  |  

Complete microbial genomes, epigenomes, and transcriptomes using long-read PacBio Sequencing.

For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence, DNA methylation is characterized in the process of sequencing. PacBio® sequencing has also been applied to microbial transcriptomes. Long reads enable sequencing of full-length cDNAs allowing for identification of complete gene and operon sequences without the need for transcript assembly. We will highlight several examples where these capabilities have been leveraged in the areas of industrial microbiology, including biocommodities, biofuels, bioremediation, new bacteria with potential commercial applications, antibiotic discovery, and livestock/plant microbiome interactions.


June 1, 2021  |  

Making the most of long reads: towards efficient assemblers for reference quality, de novo reconstructions

2015 SMRT Informatics Developers Conference Presentation Slides: Gene Myers, Ph.D., Founding Director, Systems Biology Center, Max Planck Institute delivered the keynote presentation. He talked about building efficient assemblers, the importance of random error distribution in sequencing data, and resolving tricky repeats with very long reads. He also encouraged developers to release assembly modules openly, and noted that data should be straightforward to parse since sharing data interfaces is easier than sharing software interfaces.


June 1, 2021  |  

Application specific barcoding strategies for SMRT Sequencing

Over the last few years, several advances were implemented in the PacBio RS II System to maximize throughput and efficiency while reducing the cost per sample. The number of useable bases per SMRT Cell now exceeds 1 Gb with the latest P6-C4 chemistry and 6-hour movies. For applications such as microbial sequencing, targeted sequencing, Iso-Seq (full-length isoform sequencing) and Nimblegen’s target enrichment method, current SMRT Cell yields could be an excess relative to project requirements. To this end, barcoding is a viable option for multiplexing samples. For microbial sequencing, multiplexing can be accomplished by tagging sheared genomic DNA during library construction with modified SMRTbell adapters. We studied the performance of 2- to 8-plex microbial sequencing. For full-length amplicon sequencing such as HLA typing, amplicons as large as 5 kb may be barcoded during amplification using barcoded locus-specific primers. Alternatively, amplicons may be barcoded during SMRTbell library construction using barcoded SMRTbell adapters. The preferred barcoding strategy depends on the user’s existing workflow and flexibility to changing and/or updating existing workflows. Using barcoded adapters, five Class I and II genes (3.3 – 5.8 kb) x 96 patients can be multiplexed and typed. For Iso-Seq full-length cDNA sequencing, barcodes are incorporated during 1st-strand synthesis and are enabled by tailing the oligo-dT primer with any PacBio published 16-bp barcode sequences. RNA samples from 6 maize tissues were multiplexed to generate barcoded cDNA libraries. The NimbleGen SeqCap Target Enrichment method, combined with PacBio’s long-read sequencing, provides comprehensive view of multi-kilobase contiguous regions, both exonic and intronic regions. To make this cost effective, we recommend barcoding samples for pooling prior to target enrichment and capture. Here, we present specific examples of strategies and best practices for multiplexing samples for different applications for SMRT Sequencing. Additionally, we describe recommendations for analyzing barcoded samples.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome SMRT Sequencing

As the throughput of the PacBio Systems continues to increase, so has the desire to fully utilize SMRT Cell sequencing capacity to multiplex microbes for whole genome sequencing. Multiplexing is readily achieved by incorporating a unique barcode for each microbe into the SMRTbell adapters and using a streamlined library preparation process. Incorporating barcodes without PCR amplification prevents the loss of epigenetic information and the generation of chimeric sequences, while eliminating the need to generate separate SMRTbell libraries. We multiplexed the genomes of up to 8 unique strains of H. pylori. Each genome was sheared and processed through adapter ligation in a single, addition-only reaction. The barcoded samples were pooled in equimolar quantities and a single SMRTbell library was prepared. We demonstrate successful de novo microbial assembly from all multiplexes tested (2- through 8-plex) using data generated from a single SMRTbell library, run on a single SMRT Cell with the PacBio RS II, and analyzed with standard SMRT Analysis assembly methods. This strategy was successful using both small (1.6 Mb, H. pylori) and medium (5 Mb, E. coli) genomes. This protocol facilitates the sequencing of multiple microbial genomes in a single run, greatly increasing throughput and reducing costs per genome.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome sequencing using the Sequel System

For microbial sequencing on the PacBio Sequel System, the current yield per SMRT Cell is in excess relative to project requirements. Multiplexing offers a viable solution; greatly increasing throughput, efficiency, and reducing costs per genome. This approach is achieved by incorporating a unique barcode for each microbial sample into the SMRTbell adapters and using a streamlined library preparation process. To demonstrate performance,12 unique barcodes assigned to B. subtilis and sequenced on a single SMRT Cell. To further demonstrate the applicability of this method, we multiplexed the genomes of 16 strains of H. pylori. Each DNA was sheared to 10 kb, end-repaired and ligated with a barcoded adapter in a single-tube reaction. The barcoded samples were pooled in equimolar quantities and a single SMRTbell library was prepared. Successful de novo microbial assemblies were achieved from all multiplexes tested (12-, and 16-plex) using data generated from a single SMRTbell library, run on a single SMRT Cell 1M with the PacBio Sequel System, and analyzed with standard SMRT Analysis assembly methods. Here, we describe a protocol that facilitated the multiplexing up to 12-plex of microbial genomes in one SMRT Cell 1M on the Sequel System that produced near-complete microbial de novo assemblies of <10 contigs for genomes <5 Mb in size.


June 1, 2021  |  

SMRT-Cappable-seq reveals the complex operome of bacteria

SMRT-Cappable-seq combines the isolation of full-length prokaryotic primary transcripts with long read sequencing technology. It is the first experimental methodology to sequence entire prokaryotic transcripts. It identifies the transcription start site and termination site, thereby directly defines the operon structures genome-wide in prokaryotes. Applied to E.coli, SMRT-Cappable-seq identifies a total of ~2300 operons, among which ~900 are novel. Importantly, our result reveals a pervasive read-through of previous experimentally validated transcription termination sites. Termination read-through represents a powerful strategy to control gene expression. Taken together this data provides a first glance at the complexity of the ‘operome’ in bacteria and presents an invaluable resource for understanding gene regulation and function in bacteria.


June 1, 2021  |  

Single chromosomal genome assemblies on the Sequel System with Circulomics high molecular weight DNA extraction for microbes

Background: The Nanobind technology from Circulomics provides an elegant HMW DNA extraction solution for genome sequencing of Gram-positive and -negative microbes. Nanobind is a nanostructured magnetic disk that can be used for rapid extraction of high molecular weight (HMW) DNA from diverse sample types including cultured cells, blood, plant nuclei, and bacteria. Processing can be completed in <1 hour for most sample types and can be performed manually or automated with common instruments. Methods:We have validated several critical steps for generating high-quality microbial genome assemblies in a streamlined microbial multiplexing workflow. This new workflow enables high-volume, cost-effective sequencing of up to 16 microbes totaling 30 Mb in genome size on a single SMRT Cell 1M using a target shear size of 10 kb. We also evaluated this method on a pool of four “class 3” microbes that contain >7 kb repeats. Fragment size was increased to ~14 kb, with some fragments >30 kb. Results: Here we present a demonstration of these capabilities using isolates relevant to high-throughput sequencing applications, including common foodborne pathogens (Shigella, Listeria, Salmonella), and species often seen in hospital settings (Klebsiella, Staphylococcus). For nearly all microbes, including difficult-to-assemble class III microbes, we achieved complete de novo microbial assemblies of =5 chromosomal contigs with minimum quality scores of 40 (99.99% accuracy) using data from multiplexed SMRTbell libraries. Each library was sequenced on a single SMRT Cell 1M with the PacBio Sequel System and analyzed with streamlined SMRT Analysis assembly methods. Conclusions: We achieved high-quality, closed microbial genomes using a combination of Circulomics Nanobind extraction and PacBio SMRT Sequencing, along with a newly streamlined workflow that includes automated demultiplexing and push-button assembly.


June 1, 2021  |  

Comparative metagenome-assembled genome analysis of “Candidatus Lachnocurva vaginae”, formerly known as Bacterial Vaginosis Associated bacterium – 1 (BVAB1)

Bacterial Vaginosis Associated bacterium 1 (BVAB1) is an as-yet uncultured bacterial species found in the human vagina that belongs to the family Lachnospiraceae within the order Clostridiales. As its name suggests, this bacterium is often associated with bacterial vaginosis (BV), a common vaginal disorder that has been shown to increase a woman’s risk for HIV, Chlamydia trachomatis, and Neisseria gonorrhoeae infections as well as preterm birth. Further, BVAB1 is associated with the persistence of BV following metronidazole treatment, increased vaginal inflammation, and adverse obstetrics outcomes. There is no available complete genome sequence of BVAB1, which has made it di?cult to mechanistically understand its role in disease. We present here a circularized metagenome-assembled genome (cMAG) of B VAB1 as well as a comparative analysis including an additional six metagenome-assembled genomes (MAGs) of this species. These sequences were derived from cervicovaginal samples of seven separate women. The cMAG is 1.649 Mb in size and encodes 1,578 genes. We propose to rename BVAB1 to “Candidatus Lachnocurva vaginae” based on phylogenetic analyses, and provide genomic evidence that this candidate species may metabolize D-lactate, produce trimethylamine (one of the chemicals responsible for BV-associated odor), and be motile. The cMAG and the six MAGs are valuable resources that will further contribute to our understanding of the heterogeneous etiology of bacterial vaginosis.


June 1, 2021  |  

Metagenomic analysis of type II diabetes gut microbiota using PacBio HiFi reads reveals taxonomic and functional differences

In the past decade, the human microbiome has been increasingly shown to play a major role in health. For example, imbalances in gut microbiota appear to be associated with Type II diabetes mellitus (T2DM) and cardiovascular disease. Coronary artery disease (CAD) is a major determinant of the long-term prognosis among T2DM patients, with a 2- to 4-fold increased mortality risk when present. However, the exact microbial strains or functions implicated in disease need further investigation. From a large study with 523 participants (185 healthy controls, 186 T2DM patients without CAD, and 106 T2DM patients with CAD), 3 samples from each patient group were selected for long read sequencing. Each sample was prepared and sequenced on one Sequel II System SMRT Cell, to assess whether long accurate PacBio HiFi reads could yield additional insights to those made using short reads. Each of the 9 samples was subject to metagenomic assembly and binning, taxonomic classification and functional profiling. Results from metagenomic assembly and binning show that it is possible to generate a significant number of complete MAGs (Metagenome Assembled Genomes) from each sample, with over half of the high-quality MAGs being represented by a single circular contig. We show that differences found in taxonomic and functional profiles of healthy versus diabetic patients in the small 9-sample study align with the results of the larger study, as well as with results reported in literature. For example, the abundances of beneficial short- chain fatty acid (SCFA) producers such as Phascolarctobacterium faecium and Faecalibacterium prausnitzii were decreased in T2DM gut microbiota in both studies, while the abundances of quinol and quinone biosynthesis pathways were increased as compared to healthy controls. In conclusion, metagenomic analysis of long accurate HiFi reads revealed important taxonomic and functional differences in T2DM versus healthy gut microbiota. Furthermore, metagenome assembly of long HiFi reads led to the recovery of many complete MAGs and a significant number of complete circular bacterial chromosome sequences.


April 21, 2020  |  

Chryseobacterium mulctrae sp. nov., isolated from raw cow’s milk.

A Gram-stain-negative bacterial strain, designated CA10T, was isolated from bovine raw milk sampled in Anseong, Republic of Korea. Cells were yellow-pigmented, aerobic, non-motile bacilli and grew optimally at 30?°C and pH 7.0 on tryptic soy agar without supplementation of NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain CA10T belonged to the genus Chryseobacterium, family Flavobacteriaceae, and was most closely related to Chryseobacterium indoltheticum ATCC 27950T (98.75?% similarity). The average nucleotide identity and digital DNA-DNA hybridization values of strain CA10T were 94.4 and 56.9?%, respectively, relative to Chryseobacterium scophthalmum DSM 16779T, being lower than the cut-off values of 95-96?and 70?%, respectively. The predominant respiratory quinone was menaquinone-6; major polar lipid, phosphatidylethanolamine; major fatty acids, iso-C15?:?0, summed feature 9 (iso-C17?:?1?9c and/or C16?:?0 10-methyl), summed feature 3 (iso-C15?:?0 2-OH and/or C16?:?1?7c) and iso-C17?:?0 3-OH. The results of physiological, chemotaxonomic and biochemical analyses suggested that strain CA10T is a novel species of genus Chryseobacterium, for which the name Chryseobacterium mulctrae sp. nov. is proposed. The type strain is CA10T (=KACC 21234T=JCM 33443T).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.