fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of Bacillus licheniformis strain 0DA23-1, a potential starter culture candidate for soybean fermentation

Bacillus licheniformis strain 0DA23-1, a potential fermentation starter candidate, was isolated from doenjang, a Korean high-salt-fermented soybean food. Strain 0DA23-1 contains a single circular 4,405,373-bp chromosome with a G + C content of 45.96%. The complete genome of strain 0DA23-1 does not include any of the virulence factors found in the well-known pathogens Bacillus cereus and Staphylococcus aureus. Additionally, no genes associated with resistance to eight antibiotics (chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline, and vancomycin), hemolysis, or biofilm formation were identified.

Read More »

Sunday, July 7, 2019

Complete genome of the multidrug-resistant Escherichia coli strain KBN10P04869 isolated from a patient with acute myeloid leukemia

Recently, we isolated a multidrug-resistant Escherichia coli strain KBN10P04869 from a patient with acute myeloid leukemia. We report the complete genome of this strain which consists of 5,104,264 bp with 4,457 protein-coding genes, 88 tRNAs, and 22 rRNAs, and the co-occurrence of multidrug- resistant genes including bla CMY-2, bla TEM-1, bla CTX-M-15, bla NDM-5, and blaOXA-18.

Read More »

Sunday, July 7, 2019

De novo genome assembly of the olive fruit fly (Bactrocera oleae) developed through a combination of linked-reads and long-read technologies

Long-read sequencing has greatly contributed to the generation of high quality assemblies, albeit at a high cost. It is also not always clear how to combine sequencing platforms. We sequenced the genome of the olive fruit fly (Bactrocera oleae), the most important pest in the olive fruits agribusiness industry, using Illumina short-reads, mate-pairs, 10x Genomics linked-reads, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT). The 10x linked-reads assembly gave the most contiguous assembly with an N50 of 2.16 Mb. Scaffolding the linked-reads assembly using long-reads from ONT gave a more contiguous assembly with scaffold N50 of 4.59 Mb. We also…

Read More »

Sunday, July 7, 2019

The Draft Genome of the MD-2 Pineapple

The main challenge in assembling plant genome is its ploidy level, repeats content, and polymorphism. The second-generation sequencing delivered the throughput and the accuracy that is crucial to whole-genome sequencing but insufficient and remained challenging for some plant species. It is known that genomes produced by next-gen- eration sequencing produced small contigs that would inflate the number of annotated genes (Varshney et al. 2011) and missed on the transposable elements that are abun- dant in plant genome due to their repetitive nature (Michael and Jackson 2013).

Read More »

Sunday, July 7, 2019

The complete genome sequence of a marine sponge-associated bacteria, Bacillus safensis KCTC 12796BP, which produces the anti-allergic compounds

The full genome sequence of Bacillus safensis KCTC 12796BP which had been isolated from the marine sponge in the seawater of Jeju Island, was determined by Pac-Bio next- generation sequencing system. A circular chromosome in the length of 3,935,874 bp was obtained in addition to a circular form of plasmid having 36,690 bp. The G + C content of chromosome was 41.4%, and that of plasmid was 37.3%. The number of deduced CDSs in the chromosome was 3,980, whereas 36 CDS regions were determined in a plasmid. Among the deduced CDSs in chromosome, 81 tRNA genes and 24 rRNA genes…

Read More »

Monday, January 23, 2017

Tutorial: HGAP4 de novo assembly application

This tutorial provides an overview of the Hierarchical Genome Assembly Process (HGAP4) de novo assembly analysis application. HGAP4 generates accurate de novo assemblies using only PacBio data. HGAP4 is suitable for assembling a wide range of genome sizes and complexity. HGAP4 now includes some support for diploid-aware assembly.

Read More »

1 175 176 177

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »