Menu
September 22, 2019  |  

The Epstein-Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis.

The Epstein-Barr virus (EBV) miR-BHRF1 microRNA (miRNA) cluster has been shown to facilitate B-cell transformation and promote the rapid growth of the resultant lymphoblastoid cell lines (LCLs). However, we find that expression of physiological levels of the miR-BHRF1 miRNAs in LCLs transformed with a miR-BHRF1 null mutant (?123) fails to increase their growth rate. We demonstrate that the pri-miR-BHRF1-2 and 1-3 stem-loops are present in the 3’UTR of transcripts encoding EBNA-LP and that excision of pre-miR-BHRF1-2 and 1-3 by Drosha destabilizes these mRNAs and reduces expression of the encoded protein. Therefore, mutational inactivation of pri-miR-BHRF1-2 and 1-3 in the ?123 mutant upregulates the expression of not only EBNA-LP but also EBNA-LP-regulated mRNAs and proteins, including LMP1. We hypothesize that this overexpression causes the reduced transformation capacity of the ?123 EBV mutant. Thus, in addition to regulating cellular mRNAs in trans, miR-BHRF1-2 and 1-3 also regulate EBNA-LP mRNA expression in cis. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Differential TGFß pathway targeting by miR-122 in humans and mice affects liver cancer metastasis.

Downregulation of a predominantly hepatocyte-specific miR-122 is associated with human liver cancer metastasis, whereas miR-122-deficient mice display normal liver function. Here we show a functional conservation of miR-122 in the TGFß pathway: miR-122 target site is present in the mouse but not human TGFßR1, whereas a noncanonical target site is present in the TGFß1 5’UTR in humans and other primates. Experimental switch of the miR-122 target between the receptor TGFßR1 and the ligand TGFß1 changes the metastatic properties of mouse and human liver cancer cells. High expression of TGFß1 in human primary liver tumours is associated with poor survival. We identify over 50 other miRNAs orthogonally targeting ligand/receptor pairs in humans and mice, suggesting that these are evolutionarily common events. These results reveal an evolutionary mechanism for miRNA-mediated gene regulation underlying species-specific physiological or pathological phenotype and provide a potentially valuable strategy for treating liver-associated diseases.


September 22, 2019  |  

Recurrent structural variation, clustered sites of selection, and disease risk for the complement factor H (CFH) gene family.

Structural variation and single-nucleotide variation of the complement factor H (CFH) gene family underlie several complex genetic diseases, including age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (AHUS). To understand its diversity and evolution, we performed high-quality sequencing of this ~360-kbp locus in six primate lineages, including multiple human haplotypes. Comparative sequence analyses reveal two distinct periods of gene duplication leading to the emergence of four CFH-related (CFHR) gene paralogs (CFHR2 and CFHR4 ~25-35 Mya and CFHR1 and CFHR3 ~7-13 Mya). Remarkably, all evolutionary breakpoints share a common ~4.8-kbp segment corresponding to an ancestral CFHR gene promoter that has expanded independently throughout primate evolution. This segment is recurrently reused and juxtaposed with a donor duplication containing exons 8 and 9 from ancestral CFH, creating four CFHR fusion genes that include lineage-specific members of the gene family. Combined analysis of >5,000 AMD cases and controls identifies a significant burden of a rare missense mutation that clusters at the N terminus of CFH [P = 5.81 × 10-8, odds ratio (OR) = 9.8 (3.67-Infinity)]. A bipolar clustering pattern of rare nonsynonymous mutations in patients with AMD (P < 10-3) and AHUS (P = 0.0079) maps to functional domains that show evidence of positive selection during primate evolution. Our structural variation analysis in >2,400 individuals reveals five recurrent rearrangement breakpoints that show variable frequency among AMD cases and controls. These data suggest a dynamic and recurrent pattern of mutation critical to the emergence of new CFHR genes but also in the predisposition to complex human genetic disease phenotypes.


September 22, 2019  |  

Proteomic detection of immunoglobulin light chain variable region peptides from amyloidosis patient biopsies.

Immunoglobulin light chain (LC) amyloidosis (AL) is caused by deposition of clonal LCs produced by an underlying plasma cell neoplasm. The clonotypic LC sequences are unique to each patient, and they cannot be reliably detected by either immunoassays or standard proteomic workflows that target the constant regions of LCs. We addressed this issue by developing a novel sequence template-based workflow to detect LC variable (LCV) region peptides directly from AL amyloid deposits. The workflow was implemented in a CAP/CLIA compliant clinical laboratory dedicated to proteomic subtyping of amyloid deposits extracted from either formalin-fixed paraffin-embedded tissues or subcutaneous fat aspirates. We evaluated the performance of the workflow on a validation cohort of 30 AL patients, whose amyloidogenic clone was identified using a novel proteogenomics method, and 30 controls. The recall and negative predictive values of the workflow, when identifying the gene family of the AL clone, were 93 and 98%, respectively. Application of the workflow on a clinical cohort of 500 AL amyloidosis samples highlighted a bias in the LCV gene families used by the AL clones. We also detected similarity between AL clones deposited in multiple organs of systemic AL patients. In summary, AL proteomic data sets are rich in LCV region peptides of potential clinical significance that are recoverable with advanced bioinformatics.


September 22, 2019  |  

Rodent papillomaviruses.

Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.


September 22, 2019  |  

Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats.

HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6.Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms.Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses.


September 22, 2019  |  

Cataloguing over-expressed genes in Epstein Barr Virus immortalized lymphoblastoid cell lines through consensus analysis of PacBio transcriptomes corroborates hypomethylation of chromosome 1

The ability of Epstein Barr Virus (EBV) to transform resting cell B-cells into immortalized lymphoblastoid cell lines (LCL) provides a continuous source of peripheral blood lymphocytes that are used to model conditions in which these lymphocytes play a key role. Here, the PacBio generated transcriptome of three LCLs from a parent-daughter trio (SRAid:SRP036136) provided by a previous study [1] were analyzed using a kmer-based version of YeATS (KEATS). The set of over-expressed genes in these cell lines were determined based on a comparison with the PacBio transcriptome of twenty tissues pro- vided by another study (hOPTRS) [2]. MIR155 long non-coding RNA (MIR155HG), Fc fragment of IgE receptor II (FCER2), T-cell leukemia/lymphoma 1A (TCL1A), and germinal center associated signaling and motility (GCSAM) were genes having the highest expression counts in the three LCLs with no expression in hOPTRS. Other over-expressed genes, having low expression in hOPTRS, were membrane spanning 4-domains A1 (MS4A1) and ribosomal protein S2 pseudogene 55 (RPS2P55). While some of these genes are known to be over-expressed in LCLs, this study provides a comprehensive cataloguing of such genes. A recent work involving a patient with EBV-positive large B-cell lymphoma was “unusually lacking various B-cell markers”, but over-expressing CD30 [3] – a gene ranked 79 among uniquely expressed genes here. Hypomethylation of chromosome 1 observed in EBV immortalized LCLs [4, 5] is also corroborated here by mapping the genes to chromosomes. Extending previous work identifying un-annotated genes [6], 80 genes were identified which are expressed in the three LCLs, not in hOPTRS, and missing in the GENCODE, RefSeq and RefSeqGene databases. KEATS introduces a method of determining expression counts based on a partitioning of the known annotated genes, has runtimes of a few hours on a personal workstation and provides detailed reports enabling proper debugging.


September 22, 2019  |  

Introduction to isoform sequencing using Pacific Biosciences technology (Iso-Seq)

Alternative RNA splicing is a known phenomenon, but we still do not have a complete catalog of isoforms that explain variability in the human transcriptome. We have made significant progress in developing methods to study variability of the transcriptome, but we are far away of having a complete picture of the transcriptome. The initial methods to study gene expression were based on cloning of cDNAs and Sanger sequencing. The strategy was labor-intensive and expensive. With the development of microarrays, different methods based on exon arrays and tiling arrays provided valuable information about RNA expression. However, the microarray presented significant limitations. Most of the limitations became apparent by 2005, but it was not until 2008 that an alternative method to study the transcriptome was developed. RNA Sequencing using next-generation sequencing (RNA-Seq) quickly became the technology of choice for gene expression profiling. Recently, the precision and sensitivity of RNA-Seq have come into question, especially for transcriptome reconstruction. This chapter will describe a relatively new method, “Isoform Sequencing (Iso-Seq). Iso-Seq was developed by Pacific Biosciences (PacBio), and it is capable of identifying new isoforms with extraordinary precision due to its long-read technology. The technique to create libraries is straightforward, and the PacBio RS II instrument generates the information in hours. The bioinformatics analysis is performed using the freely available SMRT® Portal software. The SMRT Portal is easy to use and capable of performing all the steps necessary to analyze the raw data and to generate high-quality full-length isoforms. For the universal acceptance of the Iso-Seq method, the capacity of the SMRT Cells needs to improve at least 10- to 100-fold to make the system affordable and attractive to users.


September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

Next-generation approaches to advancing eco-immunogenomic research in critically endangered primates.

High-throughput sequencing platforms are generating massive amounts of genomic data from nonmodel species, and these data sets are valuable resources that can be mined to advance a number of research areas. An example is the growing amount of transcriptome data that allow for examination of gene expression in nonmodel species. Here, we show how publicly available transcriptome data from nonmodel primates can be used to design novel research focused on immunogenomics. We mined transcriptome data from the world’s most endangered group of primates, the lemurs of Madagascar, for sequences corresponding to immunoglobulins. Our results confirmed homology between strepsirrhine and haplorrhine primate immunoglobulins and allowed for high-throughput sequencing of expressed antibodies (Ig-seq) in Coquerel’s sifaka (Propithecus coquereli). Using both Pacific Biosciences RS and Ion Torrent PGM sequencing, we performed Ig-seq on two individuals of Coquerel’s sifaka. We generated over 150 000 sequences of expressed antibodies, allowing for molecular characterization of the antigen-binding region. Our analyses suggest that similar VDJ expression patterns exist across all primates, with sequences closely related to the human VH 3 immunoglobulin family being heavily represented in sifaka antibodies. Moreover, the antigen-binding region of sifaka antibodies exhibited similar amino acid variation with respect to haplorrhine primates. Our study represents the first attempt to characterize sequence diversity of the expressed antibody repertoire in a species of lemur. We anticipate that methods similar to ours will provide the framework for investigating the adaptive immune response in wild populations of other nonmodel organisms and can be used to advance the burgeoning field of eco-immunology. © 2014 John Wiley & Sons Ltd.


September 22, 2019  |  

High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation.

The extent to which alternative splicing and long intergenic noncoding RNAs (lincRNAs) contribute to the specialized functions of cells within an organ is poorly understood. We generated a comprehensive dataset of gene expression from individual cell types of the Arabidopsis root. Comparisons across cell types revealed that alternative splicing tends to remove parts of coding regions from a longer, major isoform, providing evidence for a progressive mechanism of splicing. Cell-type-specific intron retention suggested a possible origin for this common form of alternative splicing. Coordinated alternative splicing across developmental stages pointed to a role in regulating differentiation. Consistent with this hypothesis, distinct isoforms of a transcription factor were shown to control developmental transitions. lincRNAs were generally lowly expressed at the level of individual cell types, but co-expression clusters provided clues as to their function. Our results highlight insights gained from analysis of expression at the level of individual cell types. Copyright © 2016 Elsevier Inc. All rights reserved.


September 22, 2019  |  

A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing.

Alternative splicing (AS) and fusion transcripts produce a vast expansion of transcriptomes and proteomes diversity. However, the reliability of these events and the extend of epigenetic mechanisms have not been adequately addressed due to its limitation of uncertainties about the complete structure of mRNA. Here we combined single-molecule real-time sequencing, Illumina RNA-seq and DNA methylation data to characterize the landscapes of DNA methylation on AS, fusion isoforms formation and lncRNA feature and further to unveil the transcriptome complexity of pig. Our analysis identified an unprecedented scale of high-quality full-length isoforms with over 28,127 novel isoforms from 26,881 novel genes. More than 92,000 novel AS events were detected and intron retention predominated in AS model, followed by exon skipping. Interestingly, we found that DNA methylation played an important role in generating various AS isoforms by regulating splicing sites, promoter regions and first exons. Furthermore, we identified a large of fusion transcripts and novel lncRNAs, and found that DNA methylation of the promoter and gene body could regulate lncRNA expression. Our results significantly improved existed gene models of pig and unveiled that pig AS and epigenetic modify were more complex than previously thought.


September 22, 2019  |  

Transcriptional diversity during lineage commitment of human blood progenitors.

Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine. Copyright © 2014, American Association for the Advancement of Science.


September 22, 2019  |  

Defining cell identity with single cell omics.

Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019  |  

Current progress in EBV-associated B-cell lymphomas.

Epstein-Barr virus (EBV) was the first human tumor virus discovered more than 50 years ago. EBV-associated lymphomagenesis is still a significant viral-associated disease as it involves a diverse range of pathologies, especially B-cell lymphomas. Recent development of high-throughput next-generation sequencing technologies and in vivo mouse models have significantly promoted our understanding of the fundamental molecular mechanisms which drive these cancers and allowed for the development of therapeutic intervention strategies. This review will highlight the current advances in EBV-associated B-cell lymphomas, focusing on transcriptional regulation, chromosome aberrations, in vivo studies of EBV-mediated lymphomagenesis, as well as the treatment strategies to target viral-associated lymphomas.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.