Discover how HiFi reads enable every aspect of viral research, from understanding viral genomes to the host immune response.
The study of genomics has revolutionized our understanding of science, but the field of transcriptomics grew with the need to explore the functional impacts of genetic variation. While different tissues in an organism may share the same genomic DNA, they can differ greatly in what regions are transcribed into RNA and in their patterns of RNA processing. By reviewing the history of transcriptomics, we can see the advantages of RNA sequencing using a full-length transcript approach become clearer.
Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.
In this PacBio User Group Meeting presentation, PacBio scientist Kristin Mars speaks about recent updates, such as the single-day library prep that’s now possible with the Iso-Seq Express workflow. She also notes that one SMRT Cell 8M is sufficient for most Iso-Seq experiments for whole transcriptome sequencing at an affordable price.
In this webinar we present Single Molecule, Real-Time (SMRT) Sequencing and the Iso-Seq method, which allow you to generate full-length cDNA sequences — no assembly required — to characterize transcript isoforms within targeted genes or across an entire transcriptome. The presenters share how the Iso-Seq method: (1) Provides high quality, full-length transcript sequences of up to 15 kb; (2) Allows for one-day library prep on a single SMRT Cell 8M to comprehensively characterize a whole transcriptome; (3) Facilitates discovery of alternative splicing events, fusion gene detection, and allelic specific isoform detection; and (4) Enables discovery of potential cancer-specific isoforms in…
In this Labroots webinar, Meredith Ashby, Director of Microbial Genomics at PacBio, describes the utility of highly accurate long-read sequencing, known as HiFi sequencing, to understand the SARs-CoV-2 viral genome. HiFi sequencing enables mutation phasing and rare variant detection to understand viral stability and mutation rates, as well as providing insights into viral population structure for monitoring viral evolution. Ashby also shares how HiFi sequencing can be used to explore the host immune response to COVID-19, specifically by providing full-length sequencing of the B cell repertoire, IGH locus and HLA genes. Access additional COVID-19 Sequencing Tools and Resources at at…
Studying microbial genomics and infectious disease? Learn how the PacBio Sequel II System can help advance your research, with first-hand perspectives from scientists who are investigating SARS-CoV-2 and COVID-19. In this webinar, Melissa Laird-Smith (Mt. Sinai School of Medicine) discusses her work evaluating the impact of host immune restriction in health and disease with high resolution HLA typing. She is joined by Corey Watson (University of Louisville School of Medicine) who talks about overcoming complexity to elucidate the role of IGH haplotype diversity in antibody-mediated immunity. Hosted by Meredith Ashby, Director of Microbial Genomics at PacBio. Access additional PacBio resources…
COVID-19 is caused by the infection of SARS-CoV-2, a member of the coronavirus family. Complete and accurate sequencing of the SARS-CoV-2 genome enables discovery and epidemiological tracing of mutations that may be important for antiviral and vaccine research. A complementary approach, sequencing the patients’ immune repertoire, allows for detection of neutralizing antibodies and understanding variation in the adaptive immune response. PacBio’s SMRT Sequencing uses circular consensus sequencing that can generate long, highly accurate (HiFi) reads. We find that a tiled multiplex PCR amplicon approach of ~1-2 kb fragments achieves a balanced tradeoff between ease of library preparation and robustness to…
PacBio 2014 User Group Meeting Presentation Slides: Anne Deslattes Mays of Georgetown University discussed how PacBio provided the necessary full-length isoform information to allow characterization of isoform distribution by sub-cell population.
The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual…
T-cells play a central part in the immune response in humans and related species. T-cell receptors (TCRs), heterodimers located on the T-cell surface, specifically bind foreign antigens displayed on the MHC complex of antigen-presenting cells. The wide spectrum of potential antigens is addressed by the diversity of TCRs created by V(D)J recombination. Profiling this repertoire of TCRs could be useful from, but not limited to, diagnosis, monitoring response to treatments, and examining T-cell development and diversification.
Oncogenic fusion of IGH-DUX4 has recently been reported as a hallmark that defines a B-ALL subtype present in up to 7% of adolescents and young adults B-ALL. The translocation of DUX4 into IGH results in aberrant activation of DUX4 by hijacking the intronic IGH enhancer (Eµ). How IGH-DUX4 translocation interplays with IGH allelic exclusion was never been explored. We investigated this in Nalm6 B-ALL cell line, using long-read (PacBio Iso-Seq method and 10X Chromium WGS), short-read (Illumina total stranded RNA and WGS), epigenome (H3K27ac ChIP-seq, ATAC-seq) and 3-D genome (Hi-C, H3K27ac HiChIP, Capture-C).
Neisseria gonorrhoeae, the sole causative agent of gonorrhea, constitutively undergoes diversification of the Type IV pilus. Gene conversion occurs between one of the several donor silent copies located in distinct loci and the recipient pilE gene, encoding the major pilin subunit of the pilus. A guanine quadruplex (G4) DNA structure and a cis-acting sRNA (G4-sRNA) are located upstream of the pilE gene and both are required for pilin antigenic variation (Av). We show that the reduced sRNA transcription lowers pilin Av frequencies. Extended transcriptional elongation is not required for Av, since limiting the transcript to 32 nt allows for normal…
Primary cutaneous follicle center lymphoma (PCFCL) is a rare mature B-cell lymphoma with an unknown etiology. PCFCL resembles follicular lymphoma (FL) by cytomorphologic and microarchitectural criteria. FL B cells are selected for N-linked glycosylation motifs in their B-cell receptors (BCRs) that are acquired during continuous somatic hypermutation. The stimulation of mannosylated BCR by lectins on the tumor microenvironment is therefore a candidate driver in FL pathogenesis. We investigated whether the same mechanism could play a role in PCFCL pathogenesis. Full-length functional variable, diversity, and joining gene sequences of 18 PCFCL and 8 primary cutaneous diffuse large B-cell lymphoma, leg-type were…
Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus,…