Menu
September 22, 2019  |  

Revisiting the contribution of gene duplication of blaOXA-23 in carbapenem-resistant Acinetobacter baumannii.

Gene duplication has been discovered for many antimicrobial resistance genes in bacterial genomes and has been considered a source of elevated antimicrobial resistance.1 The gene blaOXA-23is a major determinant in the emergence of carbapenem-resistant Acinetobacter baumannii (CRAB).2–4 We have previously reported the widespread duplication of blaOXA-23by surveying 113 clinical CRAB isolates in China.5 However, in these isolates the blaOXA-23 copy number did not correlate well with the MIC of imipenem. A similar phenomenon was also reported recently by Yoon et al.6 One reasonable explanation is that, in addition to gene duplica- tions, other mechanisms might also impact on the MIC, such as the presence of specific outer membrane proteins and/ortheover-expression of resistance–nodulation–division (RND)-type efflux pumps.7 Often, these mechanisms might vary in their performance when in different genomic contexts. Instead of making comparisons between clinical isolates, in this study we cultured A. baumannii under treatment with carbapenem, thus avoiding any interference induced in different genomic contexts. If an increase in the blaOXA-23 copy number or MIC were to occur within the same strain, the contribution of gene duplication to carbapenem resistance would be acknowledged.


September 22, 2019  |  

Genomic insights into the non-histamine production and proteolytic and lipolytic activities of Tetragenococcus halophilus KUD23.

Tetragenococcus halophilus KUD23, a non-histamine producer, was isolated from a traditional Korean high-salt fermented soybean paste, doenjang. The strain was safe in terms of antibiotic susceptibility, hemolytic activity and biofilm formation. It could grow on De Man-Rogosa-Sharpe agar containing 21% (w/v) NaCl, exhibited acid production at 15% NaCl, and had strain-specific proteolytic and lipolytic activities under salt stress. Complete genome analysis of T. halophilus KUD23 and comparative genomic analysis shed light on the genetic background behind these phenotypic characteristics, including non-production of histamine and proteolytic and lipolytic activities.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 22, 2019  |  

Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity.

Mechanisms for high L-lactic acid production remain unclear in many bacteria. Lactobacillus rhamnosus SCT-10-10-60 was previously obtained from L. rhamnosus ATCC 11443 via mutagenesis and showed improved L-lactic acid production. In this study, the genomes of strains SCT-10-10-60 and ATCC 11443 were sequenced. Both genomes are a circular chromosome, 2.99 Mb in length with a GC content of approximately 46.8%. Eight split genes were identified in strain SCT-10-10-60, including two LytR family transcriptional regulators, two Rex redox-sensing transcriptional repressors, and four ABC transporters. In total, 60 significantly up-regulated genes (log2fold-change?=?2) and 39 significantly down-regulated genes (log2fold-change?=?-?2) were identified by a transcriptome comparison between strains SCT-10-10-60 and ATCC 11443. KEGG pathway enrichment analysis revealed that “pyruvate metabolism” was significantly different (P?


September 22, 2019  |  

Comparative mapping of the ASTRINGENCY locus controlling fruit astringency in hexaploid persimmon (Diospyros kaki Thunb.) with the diploid D. lotus reference genome

Persimmon (Diospyros kaki) is a tree crop species that originated in East Asia, consists mainly of hexaploid individuals (2n = 6x = 90) with some nonaploid individuals. One of the unique characteristics of persimmon is the continuous accumulation of proanthocyanidins (PAs) in its fruit until the middle of fruit development, resulting in a strong astringent taste even at commercial fruit maturity. Among persimmon cultivars, pollination-constant and non-astringent (PCNA) types cease PA accumulation in early fruit development and become non-astringent at commercial maturity. PCNA is an allelic trait to non-PCNA and is controlled by a single locus called the ASTRINGENCY (AST) locus. Previous segregation analyses indicated that the AST locus shows hexasomic inheritance; a recessive allele, ast, at this locus confers PCNA. Here, we report a shuttle mapping approach to delimit the AST locus region in the hexaploid persimmon genome by using D. lotus, a diploid relative of D. kaki, as a reference. A D. lotus F1 population of 333 individuals and 296 D. kaki siblings segregating for the PCNA trait were used to map the AST region using haplotype-specific markers covering the AST region. This indicated that the AST locus is syntenic to an approximately 915-kb region of the D. lotus genome. In this 915-kb region, we found several candidates for AST that were revealed from the fruit transcriptome of a population segregating for the PCNA trait. These results could provide important clues for the isolation of AST in hexaploid persimmon.


September 22, 2019  |  

Comparative genomic analyses reveal the features for adaptation to nematodes in fungi.

Nematophagous (NP) fungi are ecologically important components of the soil microbiome in natural ecosystems. Esteya vermicola (Ev) has been reported as a NP fungus with a poorly understood evolutionary history and mechanism of adaptation to parasitism. Furthermore, NP fungal genomic basis of lifestyle was still unclear. We sequenced and annotated the Ev genome (34.2 Mbp) and integrated genetic makeup and evolution of pathogenic genes to investigate NP fungi. The results revealed that NP fungi had some abundant pathogenic genes corresponding to their niche. A number of gene families involved in pathogenicity were expanded, and some pathogenic orthologous genes underwent positive selection. NP fungi with diverse morphological features exhibit similarities of evolutionary convergence in attacking nematodes, but their genetic makeup and microscopic mechanism are different. Endoparasitic NP fungi showed similarity in large number of transporters and secondary metabolite coding genes. Noteworthy, expanded families of transporters and endo-beta-glucanase implied great genetic potential of Ev in quickly perturbing nematode metabolism and parasitic behavior. These results facilitate our understanding of NP fungal genomic features for adaptation to nematodes and lay a solid theoretical foundation for further research and application.© The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


September 22, 2019  |  

The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.

Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology.Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery.The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.


September 22, 2019  |  

Identification of candidate genes at the Dp-fl locus conferring resistance against the rosy apple aphid Dysaphis plantaginea

The cultivated apple is susceptible to several pests including the rosy apple aphid (RAA; Dysaphis plantaginea Passerini), control of which is mainly based on chemical treatments. A few cases of resistance to aphids have been described in apple germplasm resources, laying the basis for the development of new resistant cultivars by breeding. The cultivar ‘Florina’ is resistant to RAA, and recently, the Dp-fl locus responsible for its resistance was mapped on linkage group 8 of the apple genome. In this paper, a chromosome walking approach was performed by using a ‘Florina’ bacterial artificial chromosome (BAC) library. The walking started from the available tightly linked molecular markers flanking the resistance region. Various walking steps were performed in order to identify the minimum tiling path of BAC clones covering the Dp-fl region from both the “resistant” and “susceptible” chromosomes of ‘Florina’. A genomic region of about 279 Kb encompassing the Dp-fl resistance locus was fully sequenced by the PacBio technology. Through the development of new polymorphic markers, the mapping interval around the resistance locus was narrowed down to a physical region of 95 Kb. The annotation of this sequence resulted in the identification of four candidate genes putatively involved in the RAA resistance response.


September 22, 2019  |  

The novel phages phiCD5763 and phiCD2955 represent two groups of big plasmidial Siphoviridae phages of Clostridium difficile.

Until recently, Clostridium difficile phages were limited to Myoviruses and Siphoviruses of medium genome length (32–57 kb). Here we report the finding of phiCD5763, a Siphovirus with a large extrachromosomal circular genome (132.5 kb, 172 ORFs) and a large capsid (205.6 ± 25.6 nm in diameter) infecting MLST Clade 1 strains of C. difficile. Two subgroups of big phage genomes similar to phiCD5763 were identified in 32 NAPCR1/RT012/ST-54 C. difficile isolates from Costa Rica and in whole genome sequences (WGS) of 41 C. difficile isolates of Clades 1, 2, 3, and 4 from Canada, USA, UK, Belgium, Iraq, and China. Through comparative genomics we discovered another putative big phage genome in a non-NAPCR1 isolate from Costa Rica, phiCD2955, which represents other big phage genomes found in 130 WGS of MLST Clade 1 and 2 isolates from Canada, USA, Hungary, France, Austria, and UK. phiCD2955 (131.6 kb, 172 ORFs) is related to a previously reported C. difficile phage genome, phiCD211/phiCDIF1296T. Detailed genome analyses of phiCD5763, phiCD2955, phiCD211/phiCDIF1296T, and seven other putative C. difficile big phage genome sequences of 131–136 kb reconstructed from publicly available WGS revealed a modular gene organization and high levels of sequence heterogeneity at several hotspots, suggesting that these genomes correspond to biological entities undergoing recombination. Compared to other C. difficile phages, these big phages have unique predicted terminase, capsid, portal, neck and tail proteins, receptor binding proteins (RBPs), recombinases, resolvases, primases, helicases, ligases, and hypothetical proteins. Moreover, their predicted gene load suggests a complex regulation of both phage and host functions. Overall, our results indicate that the prevalence of C. difficile big bacteriophages is more widespread than realized and open new avenues of research aiming to decipher how these viral elements influence the biology of this emerging pathogen.


September 22, 2019  |  

Characterization of plasmids harboring blaCTX-M and blaCMY genes in E. coli from French broilers.

Resistance to extended-spectrum cephalosporins (ESC) is a global health issue. The aim of this study was to analyze and compare plasmids coding for resistance to ESC isolated from 16 avian commensal and 17 avian pathogenic Escherichia coli (APEC) strains obtained respectively at slaughterhouse or from diseased broilers in 2010-2012. Plasmid DNA was used to transform E. coli DH5alpha, and the resistances of the transformants were determined. The sequences of the ESC-resistance plasmids prepared from transformants were obtained by Illumina (33 plasmids) or PacBio (1 plasmid). Results showed that 29 of these plasmids contained the blaCTX-M-1 gene and belonged to the IncI1/ST3 type, with 27 and 20 of them carrying the sul2 or tet(A) genes respectively. Despite their diverse origins, several plasmids showed very high percentages of identity. None of the blaCTX-M-1-containing plasmid contained APEC virulence genes, although some of them were detected in the parental strains. Three plasmids had the blaCMY-2 gene, but no other resistance gene. They belonged to IncB/O/K/Z-like or IncFIA/FIB replicon types. The blaCMY-2 IncFIA/FIB plasmid was obtained from a strain isolated from a diseased broiler and also containing a blaCTX-M-1 IncI1/ST3 plasmid. Importantly APEC virulence genes (sitA-D, iucA-D, iutA, hlyF, ompT, etsA-C, iss, iroB-E, iroN, cvaA-C and cvi) were detected on the blaCMY-2 plasmid. In conclusion, our results show the dominance and high similarity of blaCTX-M-1 IncI1/ST3 plasmids, and the worrying presence of APEC virulence genes on a blaCMY-2 plasmid.


September 22, 2019  |  

Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus.

Mutations in the beta-subunit of bacterial RNA polymerase (RpoB) cause resistance to rifampin (Rifr), a critical antibiotic for treatment of multidrug-resistantStaphylococcus aureus.In vitrostudies have shown that RpoB mutations confer decreased susceptibility to other antibiotics, but the clinical relevance is unknown. Here, by analyzing 7,099S. aureusgenomes, we demonstrate that the most prevalent RpoB mutations promote clinically relevant phenotypic plasticity resulting in the emergence of stableS. aureuslineages, associated with increased risk of therapeutic failure through generation of small-colony variants (SCVs) and coresistance to last-line antimicrobial agents. We found eight RpoB mutations that accounted for 93% (469/505) of the total number of Rifrmutations. The most frequently selected amino acid substitutions affecting residue 481 (H481N/Y) were associated with worldwide expansions of Rifrclones spanning decades. Recreating the H481N/Y mutations confirmed no impact onS. aureusgrowth, but the H481N mutation promoted the emergence of a subpopulation of stable RifrSCVs with reduced susceptibility to vancomycin and daptomycin. Recreating the other frequent RpoB mutations showed similar impacts on resistance to these last-line agents. We found that 86% of all Rifrisolates in our global sample carried the mutations promoting cross-resistance to vancomycin and 52% to both vancomycin and daptomycin. As four of the most frequent RpoB mutations confer only low-level Rifr, equal to or below some international breakpoints, we recommend decreasing these breakpoints and reconsidering the appropriate use of rifampin to reduce the fixation and spread of these clinically deleterious mutations. IMPORTANCE Increasing antibiotic resistance in the major human pathogenStaphylococcus aureusis threatening the ability to treat patients with these infections. Recent laboratory studies suggest that mutations in the gene commonly associated with rifampin resistance may also impact susceptibility to other last-line antibiotics inS. aureus; however, the overall frequency and clinical impact of these mutations are unknown. By mining a global collection of clinicalS. aureusgenomes and by mutagenesis experiments, this work reveals that common rifampin-inducedrpoBmutations promote phenotypic plasticity that has led to the global emergence of stable, multidrug-resistantS. aureuslineages that are associated with increased risk of therapeutic failure through coresistance to other last-line antimicrobials. We recommend decreasing susceptibility breakpoints for rifampin to allow phenotypic detection of criticalrpoBmutations conferring low resistance to rifampin and reconsidering the appropriate use of rifampin to reduce the fixation and spread of these deleterious mutations globally.


September 22, 2019  |  

Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza.

The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young ‘AA’ subclade containing the two domesticated species. This study highlights the prevalence of functionally coupled disease resistance genes and identifies many new haplotypes of potential use for future crop protection. Finally, this study marks a milestone in modern rice research with the release of a complete long-read assembly of IR 8 ‘Miracle Rice’, which relieved famine and drove the Green Revolution in Asia 50 years ago.


September 22, 2019  |  

Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype Typhimurium in the late 1950s: a retrospective, whole-genome sequencing study.

Ampicillin, the first semi-synthetic penicillin active against Enterobacteriaceae, was released onto the market in 1961. The first outbreaks of disease caused by ampicillin-resistant strains of Salmonella enterica serotype Typhimurium were identified in the UK in 1962 and 1964. We aimed to date the emergence of this resistance in historical isolates of S enterica serotype Typhimurium.In this retrospective, whole-genome sequencing study, we analysed 288 S enterica serotype Typhimurium isolates collected between 1911 and 1969 from 31 countries on four continents and from various sources including human beings, animals, feed, and food. All isolates were tested for antimicrobial drug susceptibility with the disc diffusion method, and isolates shown to be resistant to ampicillin underwent resistance-transfer experiments. To provide insights into population structure and mechanisms of ampicillin resistance, we did whole-genome sequencing on a subset of 225 isolates, selected to maximise source, spatiotemporal, and genetic diversity.11 (4%) of 288 isolates were resistant to ampicillin because of acquisition of various ß lactamase genes, including blaTEM-1, carried by various plasmids, including the virulence plasmid of S enterica serotype Typhimurium. These 11 isolates were from three phylogenomic groups. One isolate producing TEM-1 ß lactamase was isolated in France in 1959 and two isolates producing TEM-1 ß lactamase were isolated in Tunisia in 1960, before ampicillin went on sale. The vectors for ampicillin resistance were different from those reported in the strains responsible for the outbreaks in the UK in the 1960s.The association between antibiotic use and selection of resistance determinants is not as direct as often presumed. Our results suggest that the non-clinical use of narrow-spectrum penicillins (eg, benzylpenicillin) might have favoured the diffusion of plasmids carrying the blaTEM-1gene in S enterica serotype Typhimurium in the late 1950s.Institut Pasteur, Santé publique France, the French Government’s Investissement d’Avenir programme, the Fondation Le Roch-Les Mousquetaires. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Bat biology, genomes, and the Bat1K project: To generate chromosome-level genomes for all living bat species.

Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n~1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.


September 22, 2019  |  

Cultivation-independent and cultivation-dependent analysis of microbes in the shallow-sea hydrothermal system off Kueishantao island, Taiwan: Unmasking heterotrophic bacterial diversity and functional capacity.

Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile genetic potential to adapt to the unique environmental conditions.


September 22, 2019  |  

Genome analysis of clinical multilocus sequence Type 11 Klebsiella pneumoniae from China.

The increasing prevalence of KPC-producing Klebsiella pneumoniae strains in clinical settings has been largely attributed to dissemination of organisms of specific multilocus sequence types, such as ST258 and ST11. Compared with the ST258 clone, which is prevalent in North America and Europe, ST11 is common in China but information regarding its genetic features remains scarce. In this study, we performed detailed genetic characterization of ST11 K. pneumoniae strains by analyzing whole-genome sequences of 58 clinical strains collected from diverse geographic locations in China. The ST11 genomes were found to be highly heterogeneous and clustered into at least three major lineages based on the patterns of single-nucleotide polymorphisms. Exhibiting five different capsular types, these ST11 strains were found to harbor multiple resistance and virulence determinants such as the blaKPC-2 gene, which encodes carbapenemase, and the yersiniabactin-associated virulence genes irp, ybt and fyu. Moreover, genes encoding the virulence factor aerobactin and the regulator of the mucoid phenotype (rmpA) were detectable in six genomes, whereas genes encoding salmochelin were found in three genomes. In conclusion, our data indicated that carriage of a wide range of resistance and virulence genes constitutes the underlying basis of the high level of prevalence of ST11 in clinical settings. Such findings provide insight into the development of novel strategies for prevention, diagnosis and treatment of K. pneumoniae infections.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.