Menu
April 21, 2020  |  

Genomic Analysis of Shewanella sp. O23S-The Natural Host of the pSheB Plasmid Carrying Genes for Arsenic Resistance and Dissimilatory Reduction.

Shewanella sp. O23S is a dissimilatory arsenate reducing bacterial strain involved in arsenic transformations within the abandoned gold mine in Zloty Stok (SW Poland). Previous physiological studies revealed that O23S may not only release arsenic from minerals, but also facilitate its immobilization through co-precipitation with reduced sulfur species. Given these uncommon, complementary characteristics and the application potential of the strain in arsenic-removal technologies, its genome (~5.3 Mbp), consisting of a single chromosome, two large plasmids (pSheA and pSheB) and three small plasmid-like phages (pSheC-E) was sequenced and annotated. Genes encoding putative proteins involved in heavy metal transformations, antibiotic resistance and other phenotypic traits were identified. An in-depth comparative analysis of arsenic respiration (arr) and resistance (ars) genes and their genetic context was also performed, revealing that pSheB carries the only copy of the arr genes, and a complete ars operon. The plasmid pSheB is therefore a unique natural vector of these genes, providing the host cells arsenic respiration and resistance abilities. The functionality of the identified genes was determined based on the results of the previous and additional physiological studies, including: the assessment of heavy metal and antibiotic resistance under various conditions, adhesion-biofilm formation assay and BiologTM metabolic preferences test. This combined genetic and physiological approach shed a new light on the capabilities of O23S and their molecular basis, and helped to confirm the biosafety of the strain in relation to its application in bioremediation technologies.


April 21, 2020  |  

Genome plasticity favours double chromosomal Tn4401b-blaKPC-2 transposon insertion in the Pseudomonas aeruginosa ST235 clone.

Pseudomonas aeruginosa Sequence Type 235 is a clone that possesses an extraordinary ability to acquire mobile genetic elements and has been associated with the spread of resistance genes, including genes that encode for carbapenemases. Here, we aim to characterize the genetic platforms involved in resistance dissemination in blaKPC-2-positive P. aeruginosa ST235 in Colombia.In a prospective surveillance study of infections in adult patients attended in five ICUs in five distant cities in Colombia, 58 isolates of P. aeruginosa were recovered, of which, 27 (46.6%) were resistant to carbapenems. The molecular analysis showed that 6 (22.2%) and 4 (14.8%) isolates harboured the blaVIM and blaKPC-2 genes, respectively. The four blaKPC-2-positive isolates showed a similar PFGE pulsotype and belonged to ST235. Complete genome sequencing of a representative ST235 isolate shows a unique chromosomal contig of 7097.241?bp with eight different resistance genes identified and five transposons: a Tn6162-like with ant(2?)-Ia, two Tn402-like with ant(3?)-Ia and blaOXA-2 and two Tn4401b with blaKPC-2. All transposons were inserted into the genomic islands. Interestingly, the two Tn4401b copies harbouring blaKPC-2 were adjacently inserted into a new genomic island (PAGI-17) with traces of a replicative transposition process. This double insertion was probably driven by several structural changes within the chromosomal region containing PAGI-17 in the ST235 background.This is the first report of a double Tn4401b chromosomal insertion in P. aeruginosa, just within a new genomic island (PAGI-17). This finding indicates once again the great genomic plasticity of this microorganism.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.