April 21, 2020  |  

Arcobacter cryaerophilus Isolated From New Zealand Mussels Harbor a Putative Virulence Plasmid.

A wide range of Arcobacter species have been described from shellfish in various countries but their presence has not been investigated in Australasia, in which shellfish are a popular delicacy. Since several arcobacters are considered to be emerging pathogens, we undertook a small study to evaluate their presence in several different shellfish, including greenshell mussels, oysters, and abalone (paua) in New Zealand. Arcobacter cryaerophilus, a species associated with human gastroenteritis, was the only species isolated, from greenshell mussels. Whole-genome sequencing revealed a range of genomic traits in these strains that were known or associated virulence factors. Furthermore, we describe the first putative virulence plasmid in Arcobacter, containing lytic, immunoavoidance, adhesion, antibiotic resistance, and gene transfer traits, among others. Complete genome sequence determination using a combination of long- and short-read genome sequencing strategies, was needed to identify the plasmid, clearly identifying its benefits. The potential for plasmids to disseminate virulence traits among Arcobacter and other species warrants further consideration by researchers interested in the risks to public health from these organisms.


July 7, 2019  |  

The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8.

Bacillus thuringiensis, a typical aerobic, Gram-positive, spore-forming bacterium, is an important microbial insecticide widely used in the control of agricultural pests. B. thuringiensis serovar Hailuosis YWC2-8 with high insecticidal activity against Diptera and Lepidoptera insects has three insecticidal crystal protein genes, such as cry4Cb2, cry30Ea2, and cry56Aa1. In this study, the complete genome sequence of B. thuringiensis YWC2-8 was analyzed, which contains one circular gapless chromosome and six circular plasmids. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Comparative genomics of the Campylobacter lari group.

The Campylobacter lari group is a phylogenetic clade within the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter spp., a division within the genus that includes the human pathogen Campylobacter jejuni. The C. lari group is currently composed of five species (C. lari, Campylobacter insulaenigrae, Campylobacter volucris, Campylobacter subantarcticus, and Campylobacter peloridis), as well as a group of strains termed the urease-positive thermophilic Campylobacter (UPTC) and other C. lari-like strains. Here we present the complete genome sequences of 11 C. lari group strains, including the five C. lari group species, four UPTC strains, and a lari-like strain isolated in this study. The genome of C. lari subsp. lari strain RM2100 was described previously. Analysis of the C. lari group genomes indicates that this group is highly related at the genome level. Furthermore, these genomes are strongly syntenic with minor rearrangements occurring only in 4 of the 12 genomes studied. The C. lari group can be bifurcated, based on the flagella and flagellar modification genes. Genomic analysis of the UPTC strains indicated that these organisms are variable but highly similar, closely related to but distinct from C. lari. Additionally, the C. lari group contains multiple genes encoding hemagglutination domain proteins, which are either contingency genes or linked to conserved contingency genes. Many of the features identified in strain RM2100, such as major deficiencies in amino acid biosynthesis and energy metabolism, are conserved across all 12 genomes, suggesting that these common features may play a role in the association of the C. lari group with coastal environments and watersheds. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2014. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019  |  

Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium.

Marine oxygen minimum zones (OMZs) are expanding regions of intense nitrogen cycling. Up to half of the nitrogen available for marine organisms is removed from the ocean in these regions. Metagenomic studies have identified an abundant group of sulfur-oxidizing bacteria (SUP05) with the genetic potential for nitrogen cycling and loss in OMZs. However, SUP05 have defied cultivation and their physiology remains untested. We cultured, sequenced and tested the physiology of an isolate from the SUP05 clade. We describe a facultatively anaerobic sulfur-oxidizing chemolithoautotroph that produces nitrite and consumes ammonium under anaerobic conditions. Genetic evidence that closely related strains are abundant at nitrite maxima in OMZs suggests that sulfur-oxidizing chemoautotrophs from the SUP05 clade are a potential source of nitrite, fueling competing nitrogen removal processes in the ocean.


July 7, 2019  |  

Complete genome sequence of Lutibacter profundi LP1T isolated from an Arctic deep-sea hydrothermal vent system

Lutibacter profundi LP1T within the family Flavobacteriaceae was isolated from a biofilm growing on the surface of a black smoker chimney at the Loki’s Castle vent field, located on the Arctic Mid-Ocean Ridge. The complete genome of L. profundi LP1T is the first genome to be published within the genus Lutibacter. L. profundi LP1T consists of a single 2,966,978 bp circular chromosome with a GC content of 29.8%. The genome comprises 2,537 protein-coding genes, 40 tRNA species and 2 rRNA operons. The microaerophilic, organotrophic isolate contains genes for all central carbohydrate metabolic pathways. However, genes for the oxidative branch of the pentose-phosphate-pathway, the glyoxylate shunt of the tricarboxylic acid cycle and the ATP citrate lyase for reverse TCA are not present. L. profundi LP1T utilizes starch, sucrose and diverse proteinous carbon sources. In accordance, the genome harbours 130 proteases and 104 carbohydrate-active enzymes, indicating a specialization in degrading organic matter. Among a small arsenal of 24 glycosyl hydrolases, which offer the possibility to hydrolyse diverse poly- and oligosaccharides, a starch utilization cluster was identified. Furthermore, a variety of enzymes may be secreted via T9SS and contribute to the hydrolytic variety of the microorganism. Genes for gliding motility are present, which may enable the bacteria to move within the biofilm. A substantial number of genes encoding for extracellular polysaccharide synthesis pathways, curli fibres and attachment to surfaces could mediate adhesion in the biofilm and may contribute to the biofilm formation. In addition to aerobic respiration, the complete denitrification pathway and genes for sulphide oxidation e.g. sulphide:quinone reductase are present in the genome. sulphide:quinone reductase and denitrification may serve as detoxification systems allowing L. profundi LP1T to thrive in a sulphide and nitrate enriched environment. The information gained from the genome gives a greater insight in the functional role of L. profundi LP1T in the biofilm and its adaption strategy in an extreme environment.


July 7, 2019  |  

Complete genome sequence of Campylobacter concisus ATCC 33237T and draft genome sequences for an additional eight well-characterized C. concisus strains.

We report the complete genome sequence of the Campylobacter concisus type strain ATCC 33237 and the draft genome sequences of eight additional well-characterized C. concisus strains. C. concisus has been shown to be a genetically heterogeneous species, and these nine genomes provide valuable information regarding the diversity within this taxon. Copyright © 2017 Cornelius et al.


July 7, 2019  |  

Comparative genomics of all three Campylobacter sputorum biovars and a novel cattle-associated C. sputorum clade.

Campylobacter sputorum is a non-thermotolerant campylobacter that is primarily isolated from food animals such as cattle and sheep. C. sputorum is also infrequently associated with human illness. Based on catalase and urease activity, three biovars are currently recognized within C. sputorum: bv. sputorum (catalase negative, urease negative), bv. fecalis (catalase positive, urease negative), and bv. paraureolyticus (catalase negative, urease positive). A multi-locus sequence typing (MLST) method was recently constructed for C. sputorum. MLST typing of several cattle-associated C. sputorum isolates suggested that they are members of a divergent C. sputorum clade. Although catalase positive, and thus technically bv. fecalis, the taxonomic position of these strains could not be determined solely by MLST. To further characterize C. sputorum, the genomes of four strains, representing all three biovars and the divergent clade, were sequenced to completion. Here we present a comparative genomic analysis of the four C. sputorum genomes. This analysis indicates that the three biovars and the cattle-associated strains are highly-related at the genome level with similarities in gene content. Furthermore, the four genomes are strongly syntenic with one or two minor inversions. However, substantial differences in gene content were observed among the three biovars. Finally, although the strain representing the cattle-associated isolates was shown to be C. sputorum, it is possible that this strain is a member of a novel C. sputorum subspecies; thus, these cattle-associated strains may form a second taxon within C. sputorum. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019  |  

Characterization of the emerging zoonotic pathogen Arcobacter thereius by whole genome sequencing and comparative genomics.

Four Arcobacter species have been associated with human disease, and based on current knowledge, these Gram negative bacteria are considered as potential food and waterborne zoonotic pathogens. At present, only the genome of the species Arcobacter butzleri has been analysed, and still little is known about their physiology and genetics. The species Arcobacter thereius has first been isolated from tissue of aborted piglets, duck and pig faeces, and recently from stool of human patients with enteritis. In the present study, the complete genome and analysis of the A. thereius type strain LMG24486T, as well as the comparative genome analysis with 8 other A. thereius strains are presented. Genome analysis revealed metabolic pathways for the utilization of amino acids, which represent the main source of energy, together with the presence of genes encoding for respiration-associated and chemotaxis proteins. Comparative genome analysis with the A. butzleri type strain RM4018 revealed a large correlation, though also unique features. Furthermore, in silico DDH and ANI based analysis of the nine A. thereius strains disclosed clustering into two closely related genotypes. No discriminatory differences in genome content nor phenotypic behaviour were detected, though recently the species Arcobacter porcinus was proposed to encompass part of the formerly identified Arcobacter thereius strains. The report of the presence of virulence associated genes in A. thereius, the presence of antibiotic resistance genes, verified by in vitro susceptibility testing, as well as other pathogenic related relevant features, support the classification of A. thereius as an emerging pathogen.


July 7, 2019  |  

Comparative genomic analysis identifies a Campylobacter clade deficient in selenium metabolism.

The nonthermotolerant Campylobacter species C. fetus, C. hyointestinalis, C. iguaniorum, and C. lanienae form a distinct phylogenetic cluster within the genus. These species are primarily isolated from foraging (swine) or grazing (e.g., cattle, sheep) animals and cause sporadic and infrequent human illness. Previous typing studies identified three putative novel C. lanienae-related taxa, based on either MLST or atpA sequence data. To further characterize these putative novel taxa and the C. fetus group as a whole, 76 genomes were sequenced, either to completion or to draft level. These genomes represent 26 C. lanienae strains and 50 strains of the three novel taxa. C. fetus, C. hyointestinalis and C. iguaniorum genomes were previously sequenced to completion; therefore, a comparative genomic analysis across the entire C. fetus group was conducted (including average nucleotide identity analysis) that supports the initial identification of these three novel Campylobacter species. Furthermore, C. lanienae and the three putative novel species form a discrete clade within the C. fetus group, which we have termed the C. lanienae clade. This clade is distinguished from other members of the C. fetus group by a reduced genome size and distinct CRISPR/Cas systems. Moreover, there are two signature characteristics of the C. lanienae clade. C. lanienae clade genomes carry four to ten unlinked and similar, but nonidentical, flagellin genes. Additionally, all 76 C. lanienae clade genomes sequenced demonstrate a complete absence of genes related to selenium metabolism, including genes encoding the selenocysteine insertion machinery, selenoproteins, and the selenocysteinyl tRNA. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019  |  

Campylobacter fetus subspecies contain conserved type IV secretion systems on multiple genomic islands and plasmids.

The features contributing to differences in pathogenicity of the Campylobacter fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode a type IV secretion system (T4SS) and fic domain (filamentation induced by cyclic AMP) proteins, which may disrupt host cell processes. In the genomes of 27 C. fetus strains, three phylogenetically-different T4SS-encoding regions (T4SSs) were identified: one was located in both the chromosome and in extra-chromosomal plasmids; one was located exclusively in the chromosome; and one exclusively in extra-chromosomal plasmids. We observed that C. fetus strains can contain multiple T4SSs and that homologous T4SSs can be present both in chromosomal genomic islands (GI) and on plasmids in the C. fetus strains. The GIs of the chromosomally located T4SS differed mainly by the presence of fic genes, insertion sequence elements and phage-related or hypothetical proteins. Comparative analysis showed that T4SS sequences, inserted in the same locations, were conserved in the studied C. fetus genomes. Using phylogenetic analysis of the T4SSs, it was shown that C. fetus may have acquired the T4SS regions from other Campylobacter species by horizontal gene transfer. The identified T4SSs and fic genes were found in Cff and Cfv strains, although the presence of T4SSs and fic genes were significantly associated with Cfv strains. The T4SSs and fic genes could not be associated with S-layer serotypes or geographical origin of the strains.


July 7, 2019  |  

Comparative genomics of Campylobacter fetus from reptiles and mammals reveals divergent evolution in host-associated lineages.

Campylobacter fetus currently comprises three recognized subspecies, which display distinct host association. Campylobacter fetus subsp. fetus and C fetus subsp. venerealis are both associated with endothermic mammals, primarily ruminants, whereas C fetus subsp. testudinum is primarily associated with ectothermic reptiles. Both C. fetus subsp. testudinum and C. fetus subsp. fetus have been associated with severe infections, often with a systemic component, in immunocompromised humans. To study the genetic factors associated with the distinct host dichotomy in C. fetus, whole-genome sequencing and comparison of mammal- and reptile-associated C fetus was performed. The genomes of C fetus subsp. testudinum isolated from either reptiles or humans were compared with elucidate the genetic factors associated with pathogenicity in humans. Genomic comparisons showed conservation of gene content and organization among C fetus subspecies, but a clear distinction between mammal- and reptile-associated C fetus was observed. Several genomic regions appeared to be subspecies specific, including a putative tricarballylate catabolism pathway, exclusively present in C fetus subsp. testudinum strains. Within C fetus subsp. testudinum, sapA, sapB, and sapAB type strains were observed. The recombinant locus iamABC (mlaFED) was exclusively associated with invasive C fetus subsp. testudinum strains isolated from humans. A phylogenetic reconstruction was consistent with divergent evolution in host-associated strains and the existence of a barrier to lateral gene transfer between mammal- and reptile-associated C fetus Overall, this study shows that reptile-associated C fetus subsp. testudinum is genetically divergent from mammal-associated C fetus subspecies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Comparative genomics of Campylobacter iguaniorum to unravel genetic regions associated with reptilian hosts.

Campylobacter iguaniorum is most closely related to the species C fetus, C hyointestinalis, and C lanienae Reptiles, chelonians and lizards in particular, appear to be a primary reservoir of this Campylobacter species. Here we report the genome comparison of C iguaniorum strain 1485E, isolated from a bearded dragon (Pogona vitticeps), and strain 2463D, isolated from a green iguana (Iguana iguana), with the genomes of closely related taxa, in particular with reptile-associated C fetus subsp. testudinum In contrast to C fetus, C iguaniorum is lacking an S-layer encoding region. Furthermore, a defined lipooligosaccharide biosynthesis locus, encoding multiple glycosyltransferases and bounded by waa genes, is absent from C iguaniorum Instead, multiple predicted glycosylation regions were identified in C iguaniorum One of these regions is > 50 kb with deviant G + C content, suggesting acquisition via lateral transfer. These similar, but non-homologous glycosylation regions were located at the same position on the genome in both strains. Multiple genes encoding respiratory enzymes not identified to date within the C. fetus clade were present. C iguaniorum shared highest homology with C hyointestinalis and C fetus. As in reptile-associated C fetus subsp. testudinum, a putative tricarballylate catabolism locus was identified. However, despite colonizing a shared host, no recent recombination between both taxa was detected. This genomic study provides a better understanding of host adaptation, virulence, phylogeny, and evolution of C iguaniorum and related Campylobacter taxa. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

MALDI-TOF mass spectrometry enables a comprehensive and fast analysis of dynamics and qualities of stress responses of Lactobacillus paracasei subsp. paracasei F19.

Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.


July 7, 2019  |  

Complete genome sequence of the Arcobacter bivalviorum type strain LMG 26154.

Arcobacters are routinely recovered from marine environments, and multiple Arcobacter species have been isolated from shellfish. Arcobacter bivalviorum was recovered from mussels collected in the Ebro Delta in northeastern Spain. This report describes the complete whole-genome sequence of the A. bivalviorum type strain LMG 26154 (= F4T = CECT 7835T).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.