Menu
September 22, 2019  |  

Whole-genome sequencing of Chinese yellow catfish provides a valuable genetic resource for high-throughput identification of toxin genes.

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ˜6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


September 22, 2019  |  

Nonmutational mechanism of inheritance in the Archaeon Sulfolobus solfataricus.

Epigenetic phenomena have not yet been reported in archaea, which are presumed to use a classical genetic process of heritability. Here, analysis of independent lineages of Sulfolobus solfataricus evolved for enhanced fitness implicated a non-Mendelian basis for trait inheritance. The evolved strains, called super acid-resistant Crenarchaeota (SARC), acquired traits of extreme acid resistance and genome stability relative to their wild-type parental lines. Acid resistance was heritable because it was retained regardless of extensive passage without selection. Despite the hereditary pattern, in one strain, it was impossible for these SARC traits to result from mutation because its resequenced genome had no mutation. All strains also had conserved, heritable transcriptomes implicated in acid resistance. In addition, they had improved genome stability with absent or greatly decreased mutation and transposition relative to a passaged control. A mechanism that would confer these traits without DNA sequence alteration could involve posttranslationally modified archaeal chromatin proteins. To test this idea, homologous recombination with isogenic DNA was used to perturb native chromatin structure. Recombination at up-regulated loci from the heritable SARC transcriptome reduced acid resistance and gene expression in the majority of recombinants. In contrast, recombination at a control locus that was not part of the heritable transcriptome changed neither acid resistance nor gene expression. Variation in the amount of phenotypic and expression changes across individuals was consistent with Rad54-dependent chromatin remodeling that dictated crossover location and branch migration. These data support an epigenetic model implicating chromatin structure as a contributor to heritable traits.


September 22, 2019  |  

Impacts of horizontal gene transfer on the compact genome of the clavulanic acid-producing Streptomyces strain F613-1.

Mobile genetic elements involved in mediating horizontal transfer events contribute to bacterial evolution, and bacterial genomic plasticity and instability result in variation in functional genetic information in Streptomyces secondary metabolism. In a previous study, we reported the complete genome sequence of the industrial Streptomyces strain F613-1, which produces high yields of clavulanic acid. In this study, we used comparative genomics and bioinformatics to investigate the unique genomic features of this strain. Taken together, comparative genomics were used to systematically investigate secondary metabolism capabilities and indicated that frequent exchange of genetic materials between Streptomyces replicons may shape the remarkable diversities in their secondary metabolite repertoires. Moreover, a 136.9-kb giant region of plasticity (RGP) was found in the F613-1 chromosome, and the chromosome and plasmid pSCL4 are densely packed with an exceptionally large variety of potential secondary metabolic gene clusters, involving several determinants putatively accounting for antibiotic production. In addition, the differences in the architecture and size of plasmid pSCL4 between F613-1 and ATCC 27064 suggest that the pSCL4 plasmid could evolve from pSCL4-like and pSCL2-like extrachromosomal replicons. Furthermore, the genomic analyses revealed that strain F613-1 has developed specific genomic architectures and genetic patterns that are well suited to meet the requirements of industrial innovation processes.


September 22, 2019  |  

Conjugative transfer of a novel Staphylococcal plasmid encoding the biocide resistance gene, qacA.

Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTI). Some S. aureus strains harbor plasmids that carry genes that affect resistance to biocides. Among these genes, qacA encodes the QacA Multidrug Efflux Pump that imparts decreased susceptibility to chlorhexidine, a biocide used ubiquitously in healthcare facilities. Furthermore, chlorhexidine has been considered as a S. aureus decolonization strategy in community settings. We previously conducted a chlorhexidine-based SSTI prevention trial among Ft. Benning Army trainees. Analysis of a clinical isolate (C02) from that trial identified a novel qacA-positive plasmid, pC02. Prior characterization of qacA-containing plasmids is limited and conjugative transfer of those plasmids has not been demonstrated. Given the implications of increased biocide resistance, herein we characterized pC02. In silico analysis identified genes typically associated with conjugative plasmids. Moreover, pC02 was efficiently transferred to numerous S. aureus strains and to Staphylococcus epidermidis. We screened additional qacA-positive S. aureus clinical isolates and pC02 was present in 27% of those strains; other unique qacA-harboring plasmids were also identified. Ten strains were subjected to whole genome sequencing. Sequence analysis combined with plasmid screening studies suggest that qacA-containing strains are transmitted among military personnel at Ft. Benning and that strains carrying qacA are associated with SSTIs within this population. The identification of a novel mechanism of qacA conjugative transfer among Staphylococcal strains suggests a possible future increase in the prevalence of antiseptic tolerant bacterial strains, and an increase in the rate of infections in settings where these agents are commonly used.


September 21, 2019  |  

The kinetoplastid-infecting Bodo saltans virus (BsV), a window into the most abundant giant viruses in the sea.

Giant viruses are ecologically important players in aquatic ecosystems that have challenged concepts of what constitutes a virus. Herein, we present the giant Bodo saltans virus (BsV), the first characterized representative of the most abundant group of giant viruses in ocean metagenomes, and the first isolate of a klosneuvirus, a subgroup of the Mimiviridae proposed from metagenomic data. BsV infects an ecologically important microzooplankton, the kinetoplastid Bodo saltans. Its 1.39 Mb genome encodes 1227 predicted ORFs, including a complex replication machinery. Yet, much of its translational apparatus has been lost, including all tRNAs. Essential genes are invaded by homing endonuclease-encoding self-splicing introns that may defend against competing viruses. Putative anti-host factors show extensive gene duplication via a genomic accordion indicating an ongoing evolutionary arms race and highlighting the rapid evolution and genomic plasticity that has led to genome gigantism and the enigma that is giant viruses.© 2018, Deeg et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.