Menu
September 22, 2019  |  

Genomic surveillance of Neisseria gonorrhoeae to investigate the distribution and evolution of antimicrobial-resistance determinants and lineages.

The first extensively drug resistant (XDR) Neisseria gonorrhoeae strain with high resistance to the extended-spectrum cephalosporin ceftriaxone was identified in 2009 in Japan, but no other strain with this antimicrobial-resistance profile has been reported since. However, surveillance to date has been based on phenotypic methods and sequence typing, not genome sequencing. Therefore, little is known about the local population structure at the genomic level, and how resistance determinants and lineages are distributed and evolve. We analysed the whole-genome sequence data and the antimicrobial- susceptibility testing results of 204 strains sampled in a region where the first XDR ceftriaxone-resistant N. gonorrhoeae was isolated, complemented with 67 additional genomes from other time frames and locations within Japan. Strains resistant to ceftriaxone were not found, but we discovered a sequence type (ST)7363 sub-lineage susceptible to ceftriaxone and cefixime in which the mosaic penA allele responsible for reduced susceptibility had reverted to a susceptible allele by recombination. Approximately 85% of isolates showed resistance to fluoroquinolones (ciprofloxacin) explained by linked amino acid substitutions at positions 91 and 95 of GyrA with 99% sensitivity and 100% specificity. Approximately 10% showed resistance to macrolides (azithromycin), for which genetic determinants are less clear. Furthermore, we revealed different evolutionary paths of the two major lineages: single acquisition of penA X in the ST7363-associated lineage, followed by multiple independent acquisitions of the penA X and XXXIV in the ST1901-associated lineage. Our study provides a detailed picture of the distribution of resistance determinants and disentangles the evolution of the two major lineages spreading worldwide.


September 22, 2019  |  

Genome plasticity of agr-defective Staphylococcus aureus during clinical infection.

Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. To identify additional alterations in agr-defective mutants, we sequenced and assembled the complete genomes of clone pairs from colonizing and infected sites of several patients in whom S. aureus demonstrated a within-host loss of agr function. We report that events associated with agr inactivation result in agr-defective blood and nares strain pairs that are enriched in mutations compared to pairs from wild-type controls. The random distribution of mutations between colonizing and infecting strains from the same patient, and between strains from different patients, suggests that much of the genetic complexity of agr-defective strains results from prolonged infection or therapy-induced stress. However, in one of the agr-defective infecting strains, multiple genetic changes resulted in increased virulence in a murine model of bloodstream infection, bypassing the mutation of agr and raising the possibility that some changes were selected. Expression profiling correlated the elevated virulence of this agr-defective mutant to restored expression of the agr-regulated ESAT6-like type VII secretion system, a known virulence factor. Thus, additional mutations outside the agr locus can contribute to diversification and adaptation during infection by S. aureus agr mutants associated with poor patient outcomes. Copyright © 2018 Altman et al.


September 22, 2019  |  

Genomic analysis of the Phalaenopsis pathogen Dickeya sp. PA1, representing the emerging species Dickeya fangzhongdai.

Dickeya sp. strain PA1 is the causal agent of bacterial soft rot in Phalaenopsis, an important indoor orchid in China. PA1 and a few other strains were grouped into a novel species, Dickeya fangzhongdai, and only the orchid-associated strains have been shown to cause soft rot symptoms.We constructed the complete PA1 genome sequence and used comparative genomics to explore the differences in genomic features between D. fangzhongdai and other Dickeya species.PA1 has a 4,979,223-bp circular genome with 4269 predicted protein-coding genes. D. fangzhongdai was phylogenetically similar to Dickeya solani and Dickeya dadantii. The type I to type VI secretion systems (T1SS-T6SS), except for the stt-type T2SS, were identified in D. fangzhongdai. The three phylogenetically similar species varied significantly in terms of their T5SSs and T6SSs, as did the different D. fangzhongdai strains. Genomic island (GI) prediction and synteny analysis (compared to D. fangzhongdai strains) of PA1 also indicated the presence of T5SSs and T6SSs in strain-specific regions. Two typical CRISPR arrays were identified in D. fangzhongdai and in most other Dickeya species, except for D. solani. CRISPR-1 was present in all of these Dickeya species, while the presence of CRISPR-2 varied due to species differentiation. A large polyketide/nonribosomal peptide (PK/NRP) cluster, similar to the zeamine biosynthetic gene cluster in Dickeya zeae rice strains, was discovered in D. fangzhongdai and D. solani. The D. fangzhongdai and D. solani strains might recently have acquired this gene cluster by horizontal gene transfer (HGT).Orchid-associated strains are the typical members of D. fangzhongdai. Genomic analysis of PA1 suggested that this strain presents the genomic characteristics of this novel species. Considering the absence of the stt-type T2SS, the presence of CRISPR loci and the zeamine biosynthetic gene cluster, D. fangzhongdai is likely a transitional form between D. dadantii and D. solani. This is supported by the later acquisition of the zeamine cluster and the loss of CRISPR arrays by D. solani. Comparisons of phylogenetic positions and virulence determinants could be helpful for the effective quarantine and control of this emerging species.


September 22, 2019  |  

Comparative genome analysis and evaluation of probiotic characteristics of Lactobacillus plantarum strain JDFM LP11.

In the current study, the probiotic potential of approximately 250 strains of lactic acid bacteria (LAB) isolated from piglet fecal samples were investigated; among them Lactobacillus plantarum strain JDFM LP11, which possesses significant probiotic potential, with enhanced acid/bile tolerance, attachment to porcine intestinal epithelial cells (IPEC-J2), and antimicrobial activity. The genetic characteristics of strain JDFM LP11 were explored by performing whole genome sequencing (WGS) using a PacBio system. The circular draft genome have a total length of 3,206,883 bp and a total of 3,021 coding sequences were identified. Phylogenetically, three genes, possibly related to survival and metabolic activity in the porcine host, were identified. These genes encode p60, lichenan permease IIC component, and protein TsgA, which are a putative endopeptidase, a component of the phosphotransferase system (PTS), and a major facilitator in the gut environment, respectively. Our findings suggest that understanding the functional and genetic characteristics of L. plantarum strain JDFM LP11, with its candidate genes for gut health, could provide new opportunities and insights into applications in the animal food and feed additive industries.


September 22, 2019  |  

Characterization and genomic analyses of Pseudomonas aeruginosa podovirus TC6: establishment of genus Pa11virus.

Phages have attracted a renewed interest as alternative to chemical antibiotics. Although the number of phages is 10-fold higher than that of bacteria, the number of genomically characterized phages is far less than that of bacteria. In this study, phage TC6, a novel lytic virus of Pseudomonas aeruginosa, was isolated and characterized. TC6 consists of an icosahedral head with a diameter of approximately 54 nm and a short tail with a length of about 17 nm, which are characteristics of the family Podoviridae. TC6 can lyse 86 out of 233 clinically isolated P. aeruginosa strains, thus showing application potentials for phage therapy. The linear double-stranded genomic DNA of TC6 consisted of 49796 base pairs and was predicted to contain 71 protein-coding genes. A total of 11 TC6 structural proteins were identified by mass spectrometry. Comparative analysis revealed that the P. aeruginosa phages TC6, O4, PA11, and IME180 shared high similarity at DNA sequence and proteome levels, among which PA11 was the first phage discovered and published. Meanwhile, these phages contain 54 core genes and have very close phylogenetic relationships, which distinguish them from other known phage genera. We therefore proposed that these four phages can be classified as Pa11virus, comprising a new phage genus of Podoviridae that infects Pseudomonas spp. The results of this work promoted our understanding of phage biology, classification, and diversity.


September 22, 2019  |  

Antimicrobial resistance profile of mcr-1 positive clinical isolates of Escherichia coli in China From 2013 to 2016.

Multidrug-resistant (MDR) Escherichia coli poses a great challenge for public health in recent decades. Polymyxins have been reconsidered as a valuable therapeutic option for the treatment of infections caused by MDR E. coli. A plasmid-encoded colistin resistance gene mcr-1 encoding phosphoethanolamine transferase has been recently described in Enterobacteriaceae. In this study, a total of 123 E. coli isolates obtained from patients with diarrheal diseases in China were used for the genetic analysis of colistin resistance in clinical isolates. Antimicrobial resistance profile of polymyxin B (PB) and 11 commonly used antimicrobial agents were determined. Among the 123 E. coli isolates, 9 isolates (7.3%) were resistant to PB and PCR screening showed that seven (5.7%) isolates carried the mcr-1 gene. A hybrid sequencing analysis using single-molecule, real-time (SMRT) sequencing and Illumina sequencing was then performed to resolve the genomes of the seven mcr-1 positive isolates. These seven isolates harbored multiple plasmids and are MDR, with six isolates carrying one mcr-1 positive plasmid and one isolate (14EC033) carrying two mcr-1 positive plasmids. These eight mcr-1 positive plasmids belonged to the IncX4, IncI2, and IncP1 types. In addition, the mcr-1 gene was the solo antibiotic resistance gene identified in the mcr-1 positive plasmids, while the rest of the antibiotic resistance genes were mostly clustered into one or two plasmids. Interestingly, one mcr-1 positive isolate (14EC047) was susceptible to PB, and we showed that the activity of MCR-1-mediated colistin resistance was not phenotypically expressed in 14EC047 host strain. Furthermore, three isolates exhibited resistance to PB but did not carry previously reported mcr-related genes. Multilocus sequence typing (MLST) showed that these mcr-1 positive E. coli isolates belonged to five different STs, and three isolates belonged to ST301 which carried multiple virulence factors related to diarrhea. Additionally, the mcr-1 positive isolates were all susceptible to imipenem (IMP), suggesting that IMP could be used to treat infection caused by mcr-1 positive E. coli isolates. Collectively, this study showed a high occurrence of mcr-1 positive plasmids in patients with diarrheal diseases of Guangzhou in China and the abolishment of the MCR-1 mediated colistin resistance in one E. coli isolate.


September 22, 2019  |  

Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP

Emiliania huxleyi is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of E. huxleyi blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a Roseobacter strain, Sulfitobacter D7, that we isolated from a North Atlantic E. huxleyi bloom, exhibited algicidal effects against E. huxleyi upon coculturing. Both the alga and the bacterium were found to co-occur during a natural E. huxleyi bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, Sulfitobacter D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which E. huxleyi strains that exuded higher amounts of DMSP were more susceptible to Sulfitobacter D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate E. huxleyi blooms.


September 22, 2019  |  

pYR4 from a Norwegian isolate of Yersinia ruckeri is a putative virulence plasmid encoding both a type IV pilus and a type IV secretion system

Enteric redmouth disease caused by the pathogen Yersinia ruckeri is a significant problem for fish farming around the world. Despite its importance, only a few virulence factors of Y. ruckeri have been identified and studied in detail. Here, we report and analyze the complete DNA sequence of pYR4, a plasmid from a highly pathogenic Norwegian Y. ruckeri isolate, sequenced using PacBio SMRT technology. Like the well-known pYV plasmid of human pathogenic Yersiniae, pYR4 is a member of the IncFII family. Thirty-one percent of the pYR4 sequence is unique compared to other Y. ruckeri plasmids. The unique regions contain, among others genes, a large number of mobile genetic elements and two partitioning systems. The G+C content of pYR4 is higher than that of the Y. ruckeri NVH_3758 genome, indicating its relatively recent horizontal acquisition. pYR4, as well as the related plasmid pYR3, comprises operons that encode for type IV pili and for a conjugation system (tra). In contrast to other Yersinia plasmids, pYR4 cannot be cured at elevated temperatures. Our study highlights the power of PacBio sequencing technology for identifying mis-assembled segments of genomic sequences. Comparative analysis of pYR4 and other Y. ruckeri plasmids and genomes, which were sequenced by second and the third generation sequencing technologies, showed errors in second generation sequencing assemblies. Specifically, in the Y. ruckeri 150 and Y. ruckeri ATCC29473 genome assemblies, we mapped the entire pYR3 plasmid sequence. Placing plasmid sequences on the chromosome can result in erroneous biological conclusions. Thus, PacBio sequencing or similar long-read methods should always be preferred for de novo genome sequencing. As the tra operons of pYR3, although misplaced on the chromosome during the genome assembly process, were demonstrated to have an effect on virulence, and type IV pili are virulence factors in many bacteria, we suggest that pYR4 directly contributes to Y. ruckeri virulence.


September 22, 2019  |  

Comparative genomics of Staphylococcus reveals determinants of speciation and diversification of antimicrobial defense.

The bacterial genus Staphylococcus comprises diverse species with most being described as colonizers of human and animal skin. A relational analysis of features that discriminate its species and contribute to niche adaptation and survival remains to be fully described. In this study, an interspecies, whole-genome comparative analysis of 21 Staphylococcus species was performed based on their orthologues. Three well-defined multi-species groups were identified: group A (including aureus/epidermidis); group B (including saprophyticus/xylosus) and group C (including pseudintermedius/delphini). The machine learning algorithm Random Forest was applied to prioritize orthologs that drive formation of the Staphylococcus species groups A-C. Orthologues driving staphylococcal intrageneric diversity comprised regulatory, metabolic and antimicrobial resistance proteins. Notably, the BraSR (NsaRS) two-component system (TCS) and its associated BraDE transporters that regulate antimicrobial resistance showed limited distribution in the genus and their presence was most closely associated with a subset of Staphylococcus species dominated by those that colonize human skin. Divergence of BraSR and GraSR antimicrobial peptide survival TCS and their associated transporters was observed across the staphylococci, likely reflecting niche specific evolution of these TCS/transporters and their specificities for AMPs. Experimental evolution, with selection for resistance to the lantibiotic nisin, revealed multiple routes to resistance and differences in the selection outcomes of the BraSR-positive species S. hominis and S. aureus. Selection supported a role for GraSR in nisin survival responses of the BraSR-negative species S. saprophyticus. Our study reveals diversification of antimicrobial-sensing TCS across the staphylococci and hints at differential relationships between GraSR and BraSR in those species positive for both TCS.


September 22, 2019  |  

Thermosipho spp. immune system differences affect variation in genome size and geographical distributions.

Thermosipho species inhabit thermal environments such as marine hydrothermal vents, petroleum reservoirs, and terrestrial hot springs. A 16S rRNA phylogeny of available Thermosipho spp. sequences suggested habitat specialists adapted to living in hydrothermal vents only, and habitat generalists inhabiting oil reservoirs, hydrothermal vents, and hotsprings. Comparative genomics of 15 Thermosipho genomes separated them into three distinct species with different habitat distributions: The widely distributed T. africanus and the more specialized, T. melanesiensis and T. affectus. Moreover, the species can be differentiated on the basis of genome size (GS), genome content, and immune system composition. For instance, the T. africanus genomes are largest and contained the most carbohydrate metabolism genes, which could explain why these isolates were obtained from ecologically more divergent habitats. Nonetheless, all the Thermosipho genomes, like other Thermotogae genomes, show evidence of genome streamlining. GS differences between the species could further be correlated to differences in defense capacities against foreign DNA, which influence recombination via HGT. The smallest genomes are found in T. affectus that contain both CRISPR-cas Type I and III systems, but no RM system genes. We suggest that this has caused these genomes to be almost devoid of mobile elements, contrasting the two other species genomes that contain a higher abundance of mobile elements combined with different immune system configurations. Taken together, the comparative genomic analyses of Thermosipho spp. revealed genetic variation allowing habitat differentiation within the genus as well as differentiation with respect to invading mobile DNA.


September 22, 2019  |  

Computational tools to unmask transposable elements.

A substantial proportion of the genome of many species is derived from transposable elements (TEs). Moreover, through various self-copying mechanisms, TEs continue to proliferate in the genomes of most species. TEs have contributed numerous regulatory, transcript and protein innovations and have also been linked to disease. However, notwithstanding their demonstrated impact, many genomic studies still exclude them because their repetitive nature results in various analytical complexities. Fortunately, a growing array of methods and software tools are being developed to cater for them. This Review presents a summary of computational resources for TEs and highlights some of the challenges and remaining gaps to perform comprehensive genomic analyses that do not simply ‘mask’ repeats.


September 22, 2019  |  

A metabolic and genomic assessment of sugar fermentation profiles of the thermophilic Thermotogales, Fervidobacterium pennivorans.

A metabolic, genomic and proteomic assessment of Fervidobacterium pennivorans strains was undertaken to clarify the metabolic and genetic capabilities of this Thermotogales species. The type strain Ven5 originally isolated from a hot mud spa in Italy, and a newly isolated strain (DYC) from a hot spring at Ngatamariki, New Zealand, were compared for metabolic and genomic differences. The fermentation profiles of both strains on cellobiose generated similar major end products (acetate, alanine, glutamate, H2, and CO2). The vast majority of end products produced were redox neutral, and carbon balances were in the range of 95-115%. Each strain showed distinct fermentation profiles on sugar substrates. The genome of strain DYC was sequenced and shown to have high sequence similarity and synteny with F. pennivorans Ven5 genome, suggesting they are the same species. The unique genome regions in Ven5, corresponded to genes involved in the Entner-Doudoroff pathway confirming our observation of DYC’s inability to utilize gluconate. Genome analysis was able to elucidate pathways involved in production of the observed end-products with the exception of alanine and glutamate synthesis which were resolved with less clarity due to poor sequence identity and missing critical enzymes within the pathway, respectively.


September 22, 2019  |  

Thermus sediminis sp. nov., a thiosulfate-oxidizing and arsenate-reducing organism isolated from Little Hot Creek in the Long Valley Caldera, California.

Thermus species are widespread in natural and artificial thermal environments. Two new yellow-pigmented strains, L198T and L423, isolated from Little Hot Creek, a geothermal spring in eastern California, were identified as novel organisms belonging to the genus Thermus. Cells are Gram-negative, rod-shaped, and non-motile. Growth was observed at temperatures from 45 to 75 °C and at salinities of 0-2.0% added NaCl. Both strains grow heterotrophically or chemolithotrophically by oxidation of thiosulfate to sulfate. L198T and L423 grow by aerobic respiration or anaerobic respiration with arsenate as the terminal electron acceptor. Values for 16S rRNA gene identity (=?97.01%), digital DNA-DNA hybridization (=?32.7%), OrthoANI (=?87.5%), and genome-to-genome distance (0.13) values to all Thermus genomes were less than established criteria for microbial species. The predominant respiratory quinone was menaquinone-8 and the major cellular fatty acids were iso-C15:0, iso-C17:0 and anteiso-C15:0. One unidentified phospholipid (PL1) and one unidentified glycolipid (GL1) dominated the polar lipid pattern. The new strains could be differentiated from related taxa by ß-galactosidase and ß-glucosidase activity and the presence of hydroxy fatty acids. Based on phylogenetic, genomic, phenotypic, and chemotaxonomic evidence, the novel species Thermus sediminis sp. nov. is proposed, with the type strain L198T (=?CGMCC 1.13590T?=?KCTC XXX).


September 22, 2019  |  

Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156).

Exosialidases are glycoside hydrolases that remove a single terminal sialic acid residue from oligosaccharides. They are widely distributed in biology, having been found in prokaryotes, eukaryotes, and certain viruses. Most characterized prokaryotic sialidases are from organisms that are pathogenic or commensal with mammals. However, in this study, we used functional metagenomic screening to seek microbial sialidases encoded by environmental DNA isolated from an extreme ecological niche, a thermal spring. Using recombinant expression of potential exosialidase candidates and a fluorogenic sialidase substrate, we discovered an exosialidase having no homology to known sialidases. Phylogenetic analysis indicated that this protein is a member of a small family of bacterial proteins of previously unknown function. Proton NMR revealed that this enzyme functions via an inverting catalytic mechanism, a biochemical property that is distinct from those of known exosialidases. This unique inverting exosialidase defines a new CAZy glycoside hydrolase family we have designated GH156.© 2018 Chuzel et al.


September 22, 2019  |  

Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments.

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.