Menu
April 21, 2020  |  

Bioinformatic analysis of the complete genome sequence of Pectobacterium carotovorum subsp. brasiliense BZA12 and candidate effector screening

AbstractPectobacterium carotovorum subsp. brasiliense (Pcb) is a gram-negative, plant pathogenic bacterium of the soft rot Enterobacteriaceae (SRE) family. We present the complete genome sequence of Pcb strain BZA12, which reveals that Pcb strain BZA12 carries a single 4,924,809 bp chromosome with 51.97% GC content and comprises 4508 predicted protein-coding genes.Geneannotationofthese genes utilizedGO, KEGG,and COG databases.Incomparison withthree closely related soft-rot pathogens, strain BZA12 has 3797 gene families, among which 3107 gene families are identified as orthologous with those of both P. carotovorum subsp. carotovorum PCC21 and P. carotovorum subsp. odoriferum BCS7, as well as 36 putative Unique Gene Families. We selected five putative effectors from the BZA12 genome and transiently expressed them in Nicotiana benthamiana. Candidate effector A12GL002483 was localized in the cell nucleus and induced cell death. This study provides a foundation for a better understanding of the genomic structure and function of Pcb, particularly in the discovery of potential pathogenic factors and for the development of more effective strategies against this pathogen.


April 21, 2020  |  

Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing.

Single-molecule full-length complementary DNA (cDNA) sequencing can aid genome annotation by revealing transcript structure and alternative splice forms, yet current annotation pipelines do not incorporate such information. Here we present long-read annotation (LoReAn) software, an automated annotation pipeline utilizing short- and long-read cDNA sequencing, protein evidence, and ab initio prediction to generate accurate genome annotations. Based on annotations of two fungal genomes (Verticillium dahliae and Plicaturopsis crispa) and two plant genomes (Arabidopsis [Arabidopsis thaliana] and Oryza sativa), we show that LoReAn outperforms popular annotation pipelines by integrating single-molecule cDNA-sequencing data generated from either the Pacific Biosciences or MinION sequencing platforms, correctly predicting gene structure, and capturing genes missed by other annotation pipelines. © 2019 American Society of Plant Biologists. All Rights Reserved.


April 21, 2020  |  

Genome-Scale Sequence Disruption Following Biolistic Transformation in Rice and Maize.

Biolistic transformation delivers nucleic acids into plant cells by bombarding the cells with microprojectiles, which are micron-scale, typically gold particles. Despite the wide use of this technique, little is known about its effect on the cell’s genome. We biolistically transformed linear 48-kb phage lambda and two different circular plasmids into rice (Oryza sativa) and maize (Zea mays) and analyzed the results by whole genome sequencing and optical mapping. Although some transgenic events showed simple insertions, others showed extreme genome damage in the form of chromosome truncations, large deletions, partial trisomy, and evidence of chromothripsis and breakage-fusion bridge cycling. Several transgenic events contained megabase-scale arrays of introduced DNA mixed with genomic fragments assembled by nonhomologous or microhomology-mediated joining. Damaged regions of the genome, assayed by the presence of small fragments displaced elsewhere, were often repaired without a trace, presumably by homology-dependent repair (HDR). The results suggest a model whereby successful biolistic transformation relies on a combination of end joining to insert foreign DNA and HDR to repair collateral damage caused by the microprojectiles. The differing levels of genome damage observed among transgenic events may reflect the stage of the cell cycle and the availability of templates for HDR. © 2019 American Society of Plant Biologists. All rights reserved.


April 21, 2020  |  

Genome Sequence of Jaltomata Addresses Rapid Reproductive Trait Evolution and Enhances Comparative Genomics in the Hyper-Diverse Solanaceae.

Within the economically important plant family Solanaceae, Jaltomata is a rapidly evolving genus that has extensive diversity in flower size and shape, as well as fruit and nectar color, among its ~80 species. Here, we report the whole-genome sequencing, assembly, and annotation, of one representative species (Jaltomata sinuosa) from this genus. Combining PacBio long reads (25×) and Illumina short reads (148×) achieved an assembly of ~1.45?Gb, spanning ~96% of the estimated genome. Ninety-six percent of curated single-copy orthologs in plants were detected in the assembly, supporting a high level of completeness of the genome. Similar to other Solanaceous species, repetitive elements made up a large fraction (~80%) of the genome, with the most recently active element, Gypsy, expanding across the genome in the last 1-2 Myr. Computational gene prediction, in conjunction with a merged transcriptome data set from 11 tissues, identified 34,725 protein-coding genes. Comparative phylogenetic analyses with six other sequenced Solanaceae species determined that Jaltomata is most likely sister to Solanum, although a large fraction of gene trees supported a conflicting bipartition consistent with substantial introgression between Jaltomata and Capsicum after these species split. We also identified gene family dynamics specific to Jaltomata, including expansion of gene families potentially involved in novel reproductive trait development, and loss of gene families that accompanied the loss of self-incompatibility. This high-quality genome will facilitate studies of phenotypic diversification in this rapidly radiating group and provide a new point of comparison for broader analyses of genomic evolution across the Solanaceae.


April 21, 2020  |  

Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer.

Comprehensive molecular characterization of myriad somatic alterations and aberrant gene expressions at personal level is key to precision cancer therapy, yet limited by current short-read sequencing technology, individualized catalog of complete genomic and transcriptomic features is thus far elusive. Here, we integrated second- and third-generation sequencing platforms to generate a multidimensional dataset on a patient affected by metastatic epithelial ovarian cancer. Whole-genome and hybrid transcriptome dissection captured global genetic and transcriptional variants at previously unparalleled resolution. Particularly, single-molecule mRNA sequencing identified a vast array of unannotated transcripts, novel long noncoding RNAs and gene chimeras, permitting accurate determination of transcription start, splice, polyadenylation and fusion sites. Phylogenetic and enrichment inference of isoform-level measurements implicated early functional divergence and cytosolic proteostatic stress in shaping ovarian tumorigenesis. A complementary imaging-based high-throughput drug screen was performed and subsequently validated, which consistently pinpointed proteasome inhibitors as an effective therapeutic regime by inducing protein aggregates in ovarian cancer cells. Therefore, our study suggests that clinical application of the emerging long-read full-length analysis for improving molecular diagnostics is feasible and informative. An in-depth understanding of the tumor transcriptome complexity allowed by leveraging the hybrid sequencing approach lays the basis to reveal novel and valid therapeutic vulnerabilities in advanced ovarian malignancies.


April 21, 2020  |  

PacBio full-length cDNA sequencing integrated with RNA-seq reads drastically improves the discovery of splicing transcripts in rice.

In eukaryotes, alternative splicing (AS) greatly expands the diversity of transcripts. However, it is challenging to accurately determine full-length splicing isoforms. Recently, more studies have taken advantage of Pacific Bioscience (PacBio) long-read sequencing to identify full-length transcripts. Nevertheless, the high error rate of PacBio reads seriously offsets the advantages of long reads, especially for accurately identifying splicing junctions. To best capitalize on the features of long reads, we used Illumina RNA-seq reads to improve PacBio circular consensus sequence (CCS) quality and to validate splicing patterns in the rice transcriptome. We evaluated the impact of CCS accuracy on the number and the validation rate of splicing isoforms, and integrated a comprehensive pipeline of splicing transcripts analysis by Iso-Seq and RNA-seq (STAIR) to identify the full-length multi-exon isoforms in rice seedling transcriptome (Oryza sativa L. ssp. japonica). STAIR discovered 11 733 full-length multi-exon isoforms, 6599 more than the SMRT Portal RS_IsoSeq pipeline did. Of these splicing isoforms identified, 4453 (37.9%) were missed in assembled transcripts from RNA-seq reads, and 5204 (44.4%), including 268 multi-exon long non-coding RNAs (lncRNAs), were not reported in the MSU_osa1r7 annotation. Some randomly selected unreported splicing junctions were verified by polymerase chain reaction (PCR) amplification. In addition, we investigated alternative polyadenylation (APA) events in transcripts and identified 829 major polyadenylation [poly(A)] site clusters (PACs). The analysis of splicing isoforms and APA events will facilitate the annotation of the rice genome and studies on the expression and polyadenylation of AS genes in different developmental stages or growth conditions of rice. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.


April 21, 2020  |  

Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms.

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape in closely related vertebrates. The conserved alternative transcriptional events have two distinct patterns. First, cassette exon inclusions between exons 1 and 2 interrupt the reading frame, producing truncated receptor fragments comprising only the first transmembrane (TM) domain, despite the lack of exact exon orthologues between distant species. Second, a novel promoter and transcriptional start site upstream of exon 2 produces a transcript of an N-terminally truncated 6TM isoform. However, a fundamental difference in the exonic landscaping as well as translation and translation products poses limits for modelling the human DOPr receptor system in mice.


April 21, 2020  |  

Complete mitochondrial genome of Hemiptelea davidii (Ulmaceae) and phylogenetic analysis

Hemiptelea davidii (Hance) Planch is a potential valuable forest tree in arid sandy environments. Here, the complete mitochondrial genome of H. davidii was assembled using a combination of the PacBio Sequel data and the Illumina Hiseq data. The mitochondrial genome is 460,941bp in length, including 37 protein-coding genes, 19 tRNA genes, and three rRNA genes. The GC content of the whole mito- chondrial genome is 44.84%. Phylogenetic analyses indicated that H. davidii is close with Cannabis and Morus species.


April 21, 2020  |  

Population Genome Sequencing of the Scab Fungal Species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata.

The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93 Mb. Genome assemblies of V. inaequalis and V. aucupariae contain a high content of transposable elements (TEs), most of which belong to the Gypsy or Copia LTR superfamilies and have been inactivated by Repeat-Induced Point mutations. The reference assembly of V. inaequalis presents a mosaic structure of GC-equilibrated regions that mainly contain predicted genes and AT-rich regions, mainly composed of TEs. Six pairs of strains were identified as clones. Single-Nucleotide Polymorphism (SNP) analysis between these clones revealed a high number of SNPs that are mostly located in AT-rich regions due to misalignments and allowed determining a false discovery rate. The availability of these genome sequences is expected to stimulate genetics and population genomics research of Venturia pathogens. Especially, it will help understanding the evolutionary history of Venturia species that are pathogenic on different hosts, a history that has probably been substantially influenced by TEs.Copyright © 2019 Le Cam et al.


April 21, 2020  |  

Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense.

Allotetraploid cotton species (Gossypium hirsutum and Gossypium barbadense) have long been cultivated worldwide for natural renewable textile fibers. The draft genome sequences of both species are available but they are highly fragmented and incomplete1-4. Here we report reference-grade genome assemblies and annotations for G. hirsutum accession Texas Marker-1 (TM-1) and G. barbadense accession 3-79 by integrating single-molecule real-time sequencing, BioNano optical mapping and high-throughput chromosome conformation capture techniques. Compared with previous assembled draft genomes1,3, these genome sequences show considerable improvements in contiguity and completeness for regions with high content of repeats such as centromeres. Comparative genomics analyses identify extensive structural variations that probably occurred after polyploidization, highlighted by large paracentric/pericentric inversions in 14 chromosomes. We constructed an introgression line population to introduce favorable chromosome segments from G. barbadense to G. hirsutum, allowing us to identify 13 quantitative trait loci associated with superior fiber quality. These resources will accelerate evolutionary and functional genomic studies in cotton and inform future breeding programs for fiber improvement.


April 21, 2020  |  

Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii).

Hongkong kumquat (Fortunella hindsii) is a wild citrus species characterized by dwarf plant height and early flowering. Here, we identified the monoembryonic F. hindsii (designated as ‘Mini-Citrus’) for the first time and constructed its selfing lines. This germplasm constitutes an ideal model for the genetic and functional genomics studies of citrus, which have been severely hindered by the long juvenility and inherent apomixes of citrus. F. hindsii showed a very short juvenile period (~8 months) and stable monoembryonic phenotype under cultivation. We report the first de novo assembled 373.6 Mb genome sequences (Contig-N50 2.2 Mb and Scaffold-N50 5.2 Mb) for F. hindsii. In total, 32 257 protein-coding genes were annotated, 96.9% of which had homologues in other eight Citrinae species. The phylogenomic analysis revealed a close relationship of F. hindsii with cultivated citrus varieties, especially with mandarin. Furthermore, the CRISPR/Cas9 system was demonstrated to be an efficient strategy to generate target mutagenesis on F. hindsii. The modifications of target genes in the CRISPR-modified F. hindsii were predominantly 1-bp insertions or small deletions. This genetic transformation system based on F. hindsii could shorten the whole process from explant to T1 mutant to about 15 months. Overall, due to its short juvenility, monoembryony, close genetic background to cultivated citrus and applicability of CRISPR, F. hindsii shows unprecedented potentials to be used as a model species for citrus research. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus.

The selection pressure exerted by herbicides has led to the repeated evolution of herbicide resistance in weeds. The evolution of herbicide resistance on contemporary timescales in turn provides an outstanding opportunity to investigate key questions about the genetics of adaptation, in particular the relative importance of adaptation from new mutations, standing genetic variation, or geographic spread of adaptive alleles through gene flow. Glyphosate-resistant Amaranthus tuberculatus poses one of the most significant threats to crop yields in the Midwestern United States, with both agricultural populations and herbicide resistance only recently emerging in Canada. To understand the evolutionary mechanisms driving the spread of resistance, we sequenced and assembled the A. tuberculatus genome and investigated the origins and population genomics of 163 resequenced glyphosate-resistant and susceptible individuals from Canada and the United States. In Canada, we discovered multiple modes of convergent evolution: in one locality, resistance appears to have evolved through introductions of preadapted US genotypes, while in another, there is evidence for the independent evolution of resistance on genomic backgrounds that are historically nonagricultural. Moreover, resistance on these local, nonagricultural backgrounds appears to have occurred predominantly through the partial sweep of a single haplotype. In contrast, resistant haplotypes arising from the Midwestern United States show multiple amplification haplotypes segregating both between and within populations. Therefore, while the remarkable species-wide diversity of A. tuberculatus has facilitated geographic parallel adaptation of glyphosate resistance, more recently established agricultural populations are limited to adaptation in a more mutation-limited framework.Copyright © 2019 the Author(s). Published by PNAS.


April 21, 2020  |  

The developmental dynamics of the Populus stem transcriptome.

The Populus shoot undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. We adopted joint PacBio Iso-Seq and RNA-seq analysis to identify differentially expressed transcripts along a developmental gradient from the shoot apex to the fifth internode of Populus Nanlin895. We obtained 87 150 full-length transcripts, including 2081 new isoforms and 62 058 new alternatively spliced isoforms, most of which were produced by intron retention, that were used to update the Populus annotation. Among these novel isoforms, there are 1187 long non-coding RNAs and 356 fusion genes. Using this annotation, we found 15 838 differentially expressed transcripts along the shoot developmental gradient, of which 1216 were transcription factors (TFs). Only a few of these genes were reported previously. The differential expression of these TFs suggests that they may play important roles in primary and secondary growth. AP2, ARF, YABBY and GRF TFs are highly expressed in the apex, whereas NAC, bZIP, PLATZ and HSF TFs are likely to be important for secondary growth. Overall, our findings provide evidence that long-read sequencing can complement short-read sequencing for cataloguing and quantifying eukaryotic transcripts and increase our understanding of the vital and dynamic process of shoot development. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Midrib Sucrose Accumulation and Sugar Transporter Gene Expression in YCS-Affected Sugarcane Leaves

Sucrose accumulation and decreased photosynthesis are early symptoms of yellow canopy syndrome (YCS) in sugarcane (Saccharum spp.), and precede the visual yellowing of the leaves. To investigate broad-scale gene expression changes during YCS-onset, transcriptome analyses coupled to metabolome analyses were performed. Across leaf tissues, the greatest number of differentially expressed genes related to the chloroplast, and the metabolic processes relating to nitrogen and carbohydrates. Five genes represented 90% of the TPM (Transcripts Per Million) associated with the downregulation of transcription during YCS-onset, which included PSII D1 (PsbA). This differential expression was consistent with a feedback regulatory effect upon photosynthesis. Broad-scale gene expression analyses did not reveal a cause for leaf sugar accumulation during YCS-onset. Interestingly, the midrib showed the greatest accumulation of sugars, followed by symptomatic lamina. To investigate if phloem loading/reloading may be compromised on a gene expression level – to lead to leaf sucrose accumulation – sucrose transport-related proteins of SWEETs, Sucrose Transporters (SUTs), H+-ATPases and H+-pyrophosphatases (H+-PPases) were characterised from a sugarcane transcriptome and expression analysed. Two clusters of Type I H+-PPases, with one upregulated and the other downregulated, were evident. Although less pronounced, a similar pattern of change was observed for the H+-ATPases. The disaccharide transporting SWEETs were downregulated after visual symptoms were present, and a monosaccharide transporting SWEET upregulated preceding, as well as after, symptom development. SUT gene expression was the least responsive to YCS development. The results are consistent with a reduction of photoassimilate movement through the phloem leading to sucrose build-up in the leaf.


April 21, 2020  |  

A siphonous macroalgal genome suggests convergent functions of homeobox genes in algae and land plants.

Genome evolution and development of unicellular, multinucleate macroalgae (siphonous algae) are poorly known, although various multicellular organisms have been studied extensively. To understand macroalgal developmental evolution, we assembled the ~26?Mb genome of a siphonous green alga, Caulerpa lentillifera, with high contiguity, containing 9,311 protein-coding genes. Molecular phylogeny using 107 nuclear genes indicates that the diversification of the class Ulvophyceae, including C. lentillifera, occurred before the split of the Chlorophyceae and Trebouxiophyceae. Compared with other green algae, the TALE superclass of homeobox genes, which expanded in land plants, shows a series of lineage-specific duplications in this siphonous macroalga. Plant hormone signalling components were also expanded in a lineage-specific manner. Expanded transport regulators, which show spatially different expression, suggest that the structural patterning strategy of a multinucleate cell depends on diversification of nuclear pore proteins. These results not only imply functional convergence of duplicated genes among green plants, but also provide insight into evolutionary roots of green plants. Based on the present results, we propose cellular and molecular mechanisms involved in the structural differentiation in the siphonous alga. © The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.