Jonas Korlach, of PacBio, discusses the use of SMRT sequencing to detect DNA modifications.
Ellen Paxinos, a scientist at PacBio, shares her AGBT poster on work done in collaboration with reference lab Monogram Biosciences using Single Molecule, Real-Time (SMRT) sequencing to detect minor species and variants in HCV. Using two genotypes mixed together, the team was able to detect variants down to 1% and to identify both viral haplotypes from the data. Paxinos says the study is a model for looking at genomic variation in chronic viral infection.
Fritz Sedlazeck, a postdoc at Johns Hopkins University, describes his structural variant detection tool Sniffles in this poster from AGBT 2016. Included: examples of structural variants that could not be detected with other algorithms.
At AGBT 2017, Lars Paulin from the University of Helsinki presented this poster on whole genome sequencing of the virus responsible for progressive multifocal leukoencephalopathy, a rare and dangerous brain infection. His team used long amplicon analysis to resolve the whole virus genome from three patient samples, pooled them for SMRT Sequencing, and identified variants and rearrangements. This work represents the first time the viral genome was sequenced from patients.
In a poster presented at AGBT 2017, Fritz Sedlazeck from Johns Hopkins University describes the comparison of genome assemblies produced using long-read PacBio sequencing and short-read sequencing with 10x Genomics scaffolding. An alignment reveals regions missed by the short-read assembly, including repeats, exons, and even whole genes.
Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease. We have developed a…
Adam Ameur from the National Genomics Infrastructure at SciLifeLab presented this poster at AGBT 2017. In it, he details a validation study for the use of CRISPR/Cas9 to capture genomic targets without the use of amplification. Results from 12 Huntington’s patients indicate that this approach paired with SMRT Sequencing generates accurate repeat counts in the HTT gene.
Early detection of colorectal cancer (CRC) and its precursor lesions (adenomas) is crucial to reduce mortality rates. The fecal immunochemical test (FIT) is a non-invasive CRC screening test that detects the blood-derived protein hemoglobin. However, FIT sensitivity is suboptimal especially in detection of CRC precursor lesions. As adenoma-to-carcinoma progression is accompanied by alternative splicing, tumor-specific proteins derived from alternatively spliced RNA transcripts might serve as candidate biomarkers for CRC detection.
In this AGBT 2017 poster, the University of Helsinki’s Petri Auevinen reports on efforts to understand bacteria that grow on, and subsequently spoil, food. This analysis monitored DNA modifications and transcriptomic changes in three species of lactic acid bacteria. Scientists discovered that the organisms’ metabolic profiles change substantially when grown together compared to those cultured individually, and are now studying how Cas protein activity changes under these conditions too.
In this AGBT 2017 poster, Ulf Gyllensten from Uppsala University presents two local reference genomes generated with PacBio and Bionano Genomics data. These assemblies include structural variation and repetitive regions that have been missed with previous short-read efforts, including some new genes not annotated in the human reference genome.