Menu
April 21, 2020  |  

Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus.

Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.


April 21, 2020  |  

Integrating Hi-C links with assembly graphs for chromosome-scale assembly.

Long-read sequencing and novel long-range assays have revolutionized de novo genome assembly by automating the reconstruction of reference-quality genomes. In particular, Hi-C sequencing is becoming an economical method for generating chromosome-scale scaffolds. Despite its increasing popularity, there are limited open-source tools available. Errors, particularly inversions and fusions across chromosomes, remain higher than alternate scaffolding technologies. We present a novel open-source Hi-C scaffolder that does not require an a priori estimate of chromosome number and minimizes errors by scaffolding with the assistance of an assembly graph. We demonstrate higher accuracy than the state-of-the-art methods across a variety of Hi-C library preparations and input assembly sizes. The Python and C++ code for our method is openly available at https://github.com/machinegun/SALSA.


April 21, 2020  |  

A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set.

In addition to the BAC-based reference sequence of the accession Columbia-0 from the year 2000, several short read assemblies of THE plant model organism Arabidopsis thaliana were published during the last years. Also, a SMRT-based assembly of Landsberg erecta has been generated that identified translocation and inversion polymorphisms between two genotypes of the species. Here we provide a chromosome-arm level assembly of the A. thaliana accession Niederzenz-1 (AthNd-1_v2c) based on SMRT sequencing data. The best assembly comprises 69 nucleome sequences and displays a contig length of up to 16 Mbp. Compared to an earlier Illumina short read-based NGS assembly (AthNd-1_v1), a 75 fold increase in contiguity was observed for AthNd-1_v2c. To assign contig locations independent from the Col-0 gold standard reference sequence, we used genetic anchoring to generate a de novo assembly. In addition, we assembled the chondrome and plastome sequences. Detailed analyses of AthNd-1_v2c allowed reliable identification of large genomic rearrangements between A. thaliana accessions contributing to differences in the gene sets that distinguish the genotypes. One of the differences detected identified a gene that is lacking from the Col-0 gold standard sequence. This de novo assembly extends the known proportion of the A. thaliana pan-genome.


April 21, 2020  |  

Consensus and variations in cell line specificity among human metapneumovirus strains.

Human metapneumovirus (HMPV) has been a notable etiological agent of acute respiratory infection in humans, but it was not discovered until 2001, because HMPV replicates only in a limited number of cell lines and the cytopathic effect (CPE) is often mild. To promote the study of HMPV, several groups have generated green fluorescent protein (GFP)-expressing recombinant HMPV strains (HMPVGFP). However, the growing evidence has complicated the understanding of cell line specificity of HMPV, because it seems to vary notably among HMPV strains. In addition, unique A2b clade HMPV strains with a 180-nucleotide duplication in the G gene (HMPV A2b180nt-dup strains) have recently been detected. In this study, we re-evaluated and compared the cell line specificity of clinical isolates of HMPV strains, including the novel HMPV A2b180nt-dup strains, and six recombinant HMPVGFP strains, including the newly generated recombinant HMPV A2b180nt-dup strain, MG0256-EGFP. Our data demonstrate that VeroE6 and LLC-MK2 cells generally showed the highest infectivity with any clinical isolates and recombinant HMPVGFP strains. Other human-derived cell lines (BEAS-2B, A549, HEK293, MNT-1, and HeLa cells) showed certain levels of infectivity with HMPV, but these were significantly lower than those of VeroE6 and LLC-MK2 cells. Also, the infectivity in these suboptimal cell lines varied greatly among HMPV strains. The variations were not directly related to HMPV genotypes, cell lines used for isolation and propagation, specific genome mutations, or nucleotide duplications in the G gene. Thus, these variations in suboptimal cell lines are likely intrinsic to particular HMPV strains.


April 21, 2020  |  

Genome Sequence of Rhizobium jaguaris CCGE525T, a Strain Isolated from Calliandra grandiflora Nodules from a Rain Forest in Mexico.

We present the genome sequence of Rhizobium jaguaris CCGE525T, a nitrogen-fixing bacterium isolated from nodules of Calliandra grandiflora. CCGE525T belongs to Rhizobium tropici group A, represents the symbiovar calliandrae, and forms nitrogen-fixing nodules in Phaseolus vulgaris. Genome-based metrics and phylogenomic approaches support Rhizobium jaguaris as a novel species.


April 21, 2020  |  

Reconstruction of the genomes of drug-resistant pathogens for outbreak investigation through metagenomic sequencing

Culture-independent methods that target genome fragments have shown promise in identifying certain pathogens, but the holy grail of comprehensive pathogen genome detection from microbiologically complex samples for subsequent forensic analyses remains a challenge. In the context of an investigation of a nosocomial outbreak, we used shotgun metagenomic sequencing of a human fecal sample and a neural network algorithm based on tetranucleotide frequency profiling to reconstruct microbial genomes and tested the same approach using rectal swabs from a second patient. The approach rapidly and readily detected the genome of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in the patient fecal specimen and in the rectal swab sample, achieving a level of strain resolution that was sufficient for confident transmission inference during a highly clonal outbreak. The analysis also detected previously unrecognized colonization of the patient by vancomycin-resistant Enterococcus faecium, another multidrug-resistant bacterium.IMPORTANCE The study results reported here perfectly demonstrate the power and promise of clinical metagenomics to recover genome sequences of important drug-resistant bacteria and to rapidly provide rich data that inform outbreak investigations and treatment decisions, independently of the need to culture the organisms.


April 21, 2020  |  

Complete Genome Sequence of Actinosynnema pretiosum X47, An Industrial Strain that Produces the Antibiotic Ansamitocin AP-3.

Ansamitocins are extraordinarily potent antitumor agents. Ansamitocin P-3 (AP-3), which is produced by Actinosynnema pretiosum, has been developed as a cytotoxic drug for breast cancer. Despite its importance, AP-3 is of limited applicability because of the low production yield. A. pretiosum strain X47 was developed from A. pretiosum ATCC 31565 by mutation breeding and shows a relatively high AP-3 yield. Here, we analyzed the A. pretiosum X47 genome, which is ~8.13 Mb in length with 6693 coding sequences, 58 tRNA genes, and 15 rRNA genes. The DNA sequence of the ansamitocin biosynthetic gene cluster is highly similar to that of the corresponding cluster in A. pretiosum ATCC 31565, with 99.9% identity. However, RT-qPCR analysis showed that the expression levels of ansamitocin biosynthetic genes were significantly increased in X47 compared with the levels in the wild-type strain, consistent with the higher yield of AP-3 in X47. The annotated complete genome sequence of this strain will facilitate understanding the molecular mechanisms of ansamitocin biosynthesis and regulation in A. pretiosum and help further genetic engineering studies to enhance the production of AP-3.


April 21, 2020  |  

Long-read sequence and assembly of segmental duplications.

We have developed a computational method based on polyploid phasing of long sequence reads to resolve collapsed regions of segmental duplications within genome assemblies. Segmental Duplication Assembler (SDA; https://github.com/mvollger/SDA ) constructs graphs in which paralogous sequence variants define the nodes and long-read sequences provide attraction and repulsion edges, enabling the partition and assembly of long reads corresponding to distinct paralogs. We apply it to single-molecule, real-time sequence data from three human genomes and recover 33-79 megabase pairs (Mb) of duplications in which approximately half of the loci are diverged (<99.8%) compared to the reference genome. We show that the corresponding sequence is highly accurate (>99.9%) and that the diverged sequence corresponds to copy-number-variable paralogs that are absent from the human reference genome. Our method can be applied to other complex genomes to resolve the last gene-rich gaps, improve duplicate gene annotation, and better understand copy-number-variant genetic diversity at the base-pair level.


April 21, 2020  |  

Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes.

The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging sequencing platforms and analytical tools for de novo assembly, provide background information for each of their steps, and discuss the spectrum of available options. Our decision tree recommends workflows for the generation of a high-quality genome assembly when used in combination with the specific needs and resources of a project.Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Characterizing the major structural variant alleles of the human genome.

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin

Streptomyes spongiicola HNM0071T is a novel marine sponge-associated actinomycete with potential to produce antitumor agents including staurosporine and echinomycin. Here, we present the complete genome sequence of S. spongiicola HNM0071, which consists of a linear chromosome of 7,180,417?bp, 5669 protein coding genes, 18 rRNA genes, and 66 tRNA genes. Twenty-seven putative secondary metabolite biosynthetic gene clusters were found in the genome. Among them, the staurosporine and echinomycin gene clusters have been described completely. The complete genome information presented here will enable us to investigate the biosynthetic mechanism of two well-known antitumor antibiotics and to discover novel secondary metabolites with potential antitumor activities.


April 21, 2020  |  

Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan.

Aeromonas hydrophila and Aeromonas caviae adapt to saline water environments and are the most predominant Aeromonas species isolated from estuaries. Here, we isolated antimicrobial-resistant (AMR) Aeromonas strains (A. hydrophila GSH8-2 and A. caviae GSH8M-1) carrying the carabapenemase blaKPC-2 gene from a wastewater treatment plant (WWTP) effluent in Tokyo Bay (Japan) and determined their complete genome sequences. GSH8-2 and GSH8M-1 were classified as newly assigned sequence types ST558 and ST13, suggesting no supportive evidence of clonal dissemination. The strains appear to have acquired blaKPC-2 -positive IncP-6-relative plasmids (pGSH8-2 and pGSH8M-1-2) that share a common backbone with plasmids in Aeromonas sp. ASNIH3 isolated from hospital wastewater in the United States, A. hydrophila WCHAH045096 isolated from sewage in China, other clinical isolates (Klebsiella, Enterobacter and Escherichia coli), and wastewater isolates (Citrobacter, Pseudomonas and other Aeromonas spp.). In addition to blaKPC-2 , pGSH8M-1-2 carries an IS26-mediated composite transposon including a macrolide resistance gene, mph(A). Although Aeromonas species are opportunistic pathogens, they could serve as potential environmental reservoir bacteria for carbapenemase and AMR genes. AMR monitoring from WWTP effluents will contribute to the detection of ongoing AMR dissemination in the environment and might provide an early warning of potential dissemination in clinical settings and communities. © 2019 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits.

Jatropha curcas (physic nut), a non-edible oilseed crop, represents one of the most promising alternative energy sources due to its high seed oil content, rapid growth and adaptability to various environments. We report ~339 Mbp draft whole genome sequence of J. curcas var. Chai Nat using both the PacBio and Illumina sequencing platforms. We identified and categorized differentially expressed genes related to biosynthesis of lipid and toxic compound among four stages of seed development. Triacylglycerol (TAG), the major component of seed storage oil, is mainly synthesized by phospholipid:diacylglycerol acyltransferase in Jatropha, and continuous high expression of homologs of oleosin over seed development contributes to accumulation of high level of oil in kernels by preventing the breakdown of TAG. A physical cluster of genes for diterpenoid biosynthetic enzymes, including casbene synthases highly responsible for a toxic compound, phorbol ester, in seed cake, was syntenically highly conserved between Jatropha and castor bean. Transcriptomic analysis of female and male flowers revealed the up-regulation of a dozen family of TFs in female flower. Additionally, we constructed a robust species tree enabling estimation of divergence times among nine Jatropha species and five commercial crops in Malpighiales order. Our results will help researchers and breeders increase energy efficiency of this important oil seed crop by improving yield and oil content, and eliminating toxic compound in seed cake for animal feed. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Nephromyces encodes a urate metabolism pathway and predicted peroxisomes, demonstrating that these are not ancient losses of apicomplexans.

The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.