X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 23, 2019

Product Note: Multiplexing amplicons up to 10 kb

The PacBio System combines single molecule observation, long-read sequencing, and a low degree of sequence bias to fully characterize genetic complexity. This includes many common variant types with kilobase-size intact fragments. With fully supported end-to-end workflows for multiplexing, and up to ninety-six 10 kb amplicons, study sizes can be increased or large resequencing projects can be performed to better understand this genetic complexity.

Read More »

Tuesday, April 23, 2019

Application Note: Targeted sequencing and chromosomal haplotype assembly using Cergentis TLA technology with SMRT Sequencing

The Targeted Locus Amplification (TLA) Technology from Cergentis enables the targeted, hypothesis-neutral, amplification of any genomic locus of interest over 50 kb using just one primer pair complementary to a short locus-specific sequence. TLA is a strategy to selectively amplify complete loci on the basis of crosslinking physically proximal sequences. Unlike other targeted sequencing methods, TLA works without prior detailed locus information, as one primer pair is sufficient to amplify tens to hundreds of kilobases of DNA surrounding that locus. In a separate application of TLA, the unamplified template can be used for genome-wide phasing and assembly. TLA enables targeted…

Read More »

Tuesday, April 23, 2019

Application Note: Multiplex target enrichment using barcoded multi-kilobase fragments and probe-based capture technologies

Target enrichment capture methods allow scientists to rapidly interrogate important genomic regions of interest for variant discovery, including SNPs, gene isoforms, and structural variation. Custom targeted sequencing panels are important for characterizing heterogeneous, complex diseases and uncovering the genetic basis of inherited traits with more uniform coverage when compared to PCR-based strategies. With the increasing availability of high-quality reference genomes, customized gene panels are readily designed with high specificity to capture genomic regions of interest, thus enabling scientists to expand their research scope from a single individual to larger cohort studies or population-wide investigations. Coupled with PacBio long-read sequencing, these…

Read More »

Tuesday, April 23, 2019

Application Brief: Long-read RNA sequencing – Best Practices

With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and affordably sequence transcript isoforms of up to 10 kb in their entirety. The Iso-Seq method allows users to generate full-length cDNA sequences — with no assembly required — in order to confidently characterize the full complement of transcript isoforms within targeted genes, or across an entire transcriptome.

Read More »

Tuesday, April 23, 2019

Application Brief: Targeted sequencing for amplicons – Best Practices

With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate high-fidelity, long reads (>99% single-molecule read accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.

Read More »

Tuesday, April 23, 2019

Product Note: Fast, high-resolution DNA sizing with the fragment analyzer system

The Agilent 5200, 5300, and 5400 Fragment Analyzer instruments are fast, high-resolution benchtop capillary electrophoresis (CE) platforms that utilize proprietary markers to accurately size fragments ranging from 10 to 50 kb. This platform allows important DNA quality checkpoints to be completed in one hour for de novo large-genome sequencing projects and other PacBio applications leveraging multi-kilobase read lengths. The instrument can be used in place of time-consuming QC steps involving pulsed field gel electrophoresis (PFGE), saving time by avoiding multiple overnight gel runs when preparing large-insert SMRTbell libraries. Alternative DNA-sizing instruments cannot accurately resolve large DNA fragments in this range.

Read More »

Tuesday, April 23, 2019

Product Note: SMRTbell express template prep 2.0 for large-insert libraries

The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for supporting de novo genome sequencing and structural variant detection projects. Our large-insert gDNA protocol has been streamlined to…

Read More »

Tuesday, April 23, 2019

Application Note: Low DNA input workflow considerations for de novo genome assembly

Obtaining plant and animal genomes with the highest accuracy and contiguity is extremely important when exploring the functional impact of genetic diversity. A comprehensive view of the genome provides power to capture undetected SNVs, fully intact genes, and regulatory regions embedded in complex structures that fragmented draft genomes often miss. Single Molecule, Real-Time (SMRT) Sequencing has become the gold standard for easy and affordable generation of high-quality de novo genome assemblies of even the most complex plant and animal genomes.

Read More »

Tuesday, April 23, 2019

Product Note: Fast, high-resolution DNA sizing with the Agilent Femto Pulse system

The Agilent Femto Pulse system automated pulsed-field CE instrument is a fast, high-resolution benchtop capillary electrophoresis (CE) platform that utilizes pulsed-field electrophoresis to separate high molecular weight DNA fragments. This platform allows important DNA quality checkpoints to be completed in less than 1.5 hours with minimal sample input for de novo large genome sequencing projects and other PacBio applications leveraging multi-kilobase read lengths. The instrument can be used in place of gel-based pulsed-field electrophoresis (PFGE) systems to fully support generation of large-insert SMRTbell libraries with accurate sizing to 165 kb. Alternative DNA sizing instruments cannot accurately resolve large DNA fragments…

Read More »

Tuesday, April 23, 2019

Product Note: SMRTbell express template prep 2.0 for microbial multiplexing

The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for obtaining complete microbial genome assemblies with multiplexed sequencing. By using a single-tube, addition-only strategy, the streamlined workflow reduces…

Read More »

Tuesday, April 23, 2019

Application Note: Microbial multiplexing workflow on the Sequel System

Obtaining microbial genomes with the highest accuracy and contiguity is extremely important when exploring the functional impact of genetic and epigenetic variants on a genome-wide scale. A comprehensive view of the bacterial genome, including genes, regulatory regions, IS elements, phage integration sites, and base modifications is vital to understanding key traits such as antibiotic resistance, virulence, and metabolism. SMRT Sequencing provides complete genomes, often assembled into a single contig. Our streamlined microbial multiplexing procedure for the Sequel System, from library preparation to genome assembly, can be completed with less than 8 hours bench time. Starting with high-quality genomic DNA (gDNA),…

Read More »

Tuesday, April 23, 2019

Application Brief: Whole genome sequencing for de novo assembly – Best Practices

Single Molecule, Real-Time (SMRT) Sequencing on the Sequel II System enables easy and affordable generation of high-quality de novo assemblies of even the most complex genomes. With megabase-size contig N50s, consensus accuracies >99.99%, and tools for phasing haplotypes you can capture undetected SNVs, fully intact genes, and regulatory regions embedded in complex structures that fragmented draft genomes often miss.

Read More »

Tuesday, April 23, 2019

Application Brief: Structural variant detection using whole genome sequencing – Best Practices

With the Sequel II System powered by Single Molecule, Real-Time (SMRT) Sequencing technology and SMRT Link v7.0, you can affordably and effectively detect structural variants (SVs), copy number variants, and large indels ranging in size from tens to thousands of base pairs. PacBio long-read whole genome sequencing comprehensively resolves variants in an individual with high precision and recall. For population genetics and pedigree studies, joint calling powers rapid discovery of common variants within a sample cohort.

Read More »

Tuesday, April 23, 2019

Application Brief: Variant detection using whole genome sequencing with HiFi reads – Best Practices

With highly accurate long reads (HiFi reads) from the Sequel II System, powered by Single Molecule, Real-Time (SMRT) Sequencing technology, you can comprehensively detect variants in a human genome. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.

Read More »

1 2