April 21, 2020  |  

Short translational ramp determines efficiency of protein synthesis

It is generally assumed that translation efficiency is governed by translation initiation. However, the efficiency of protein synthesis is regulated by multiple factors including tRNA abundance, codon composition, mRNA motifs and amino-acid sequence1textendash4. These factors influence the rate of protein synthesis beyond the initiation phase of translation, typically by modulating the rate of peptide-bond formation and to a lesser extent that of translocation. The slowdown in translation during the early elongation phase, known as the 5textquoteright translational ramp, likely contributes to the efficiency of protein synthesis 5textendash9. Multiple mechanisms, which could explain the molecular basis for this translational ramp, have been proposed that include tRNA abundance bias6,9, the rate of translation initiation10textendash15, mRNA and ribosome structure 11,12,14,16textendash18, or retention of initiation factors during early elongation events 19. Here, we show that the amount of synthesized protein (translation efficiency) depends on a short translational ramp that comprises the first 5 codons in mRNA. Using a library of more than 250,000 reporter sequences combined with in vitro and in vivo protein expression assays, we show that differences in the short ramp can lead to 3 to 4 orders of magnitude changes in protein abundance. The observed difference is not dependent on tRNA abundance, efficiency of translation initiation, or overall mRNA structure. Instead, we show that translation is regulated by amino-acid-sequence composition and local mRNA sequence. Single-molecule measurements of translation kinetics indicate substantial pausing of ribosome and abortion of protein synthesis on the 4th or 5th codon for distinct amino acid or nucleotide compositions. Introduction of preferred sequence motifs, only at the exact positions within the mRNA, improves protein synthesis for recombinant proteins, indicating an evolutionarily conserved mechanism for controlling translational efficiency.


April 21, 2020  |  

eIF5B gates the transition from translation initiation to elongation.

Translation initiation determines both the quantity and identity of the protein that is encoded in an mRNA by establishing the reading frame for protein synthesis. In eukaryotic cells, numerous translation initiation factors prepare ribosomes for polypeptide synthesis; however, the underlying dynamics of this process remain unclear1,2. A central question is how eukaryotic ribosomes transition from translation initiation to elongation. Here we use in vitro single-molecule fluorescence microscopy approaches in a purified yeast Saccharomyces cerevisiae translation system to monitor directly, in real time, the pathways of late translation initiation and the transition to elongation. This transition was slower in our eukaryotic system than that reported for Escherichia coli3-5. The slow entry to elongation was defined by a long residence time of eukaryotic initiation factor 5B (eIF5B) on the 80S ribosome after the joining of individual ribosomal subunits-a process that is catalysed by this universally conserved initiation factor. Inhibition of the GTPase activity of eIF5B after the joining of ribosomal subunits prevented the dissociation of eIF5B from the 80S complex, thereby preventing elongation. Our findings illustrate how the dissociation of eIF5B serves as a kinetic checkpoint for the transition from initiation to elongation, and how its release may be governed by a change in the conformation of the ribosome complex that triggers GTP hydrolysis.


April 21, 2020  |  

Construction and characterization of metal ion-containing DNA nanowires for synthetic biology and nanotechnology.

DNA is an attractive candidate for integration into nanoelectronics as a biological nanowire due to its linear geometry, definable base sequence, easy, inexpensive and non-toxic replication and self-assembling properties. Recently we discovered that by intercalating Ag+ in polycytosine-mismatch oligonucleotides, the resulting C-Ag+-C duplexes are able to conduct charge efficiently. To map the functionality and biostability of this system, we built and characterized internally-functionalized DNA nanowires through non-canonical, Ag+-mediated base pairing in duplexes containing cytosine-cytosine mismatches. We assessed the thermal and chemical stability of ion-coordinated duplexes in aqueous solutions and conclude that the C-Ag+-C bond forms DNA duplexes with replicable geometry, predictable thermodynamics, and tunable length. We demonstrated continuous ion chain formation in oligonucleotides of 11-50 nucleotides (nt), and enzyme ligation of mixed strands up to six times that length. This construction is feasible without detectable silver nanocluster contaminants. Functional gene parts for the synthesis of DNA- and RNA-based, C-Ag+-C duplexes in a cell-free system have been constructed in an Escherichia coli expression plasmid and added to the open-source BioBrick Registry, paving the way to realizing the promise of inexpensive industrial production. With appropriate design constraints, this conductive variant of DNA demonstrates promise for use in synthetic biological constructs as a dynamic nucleic acid component and contributes molecular electronic functionality to DNA that is not already found in nature. We propose a viable route to fabricating stable DNA nanowires in cell-free and synthetic biological systems for the production of self-assembling nanoelectronic architectures.


October 23, 2019  |  

Real-time observation of flexible domain movements in CRISPR-Cas9.

The CRISPR-associated protein Cas9 is widely used for genome editing because it cleaves target DNA through the assistance of a single-guide RNA (sgRNA). Structural studies have revealed the multi-domain architecture of Cas9 and suggested sequential domain movements of Cas9 upon binding to the sgRNA and the target DNA These studies also hinted at the flexibility between domains; however, it remains unclear whether these flexible movements occur in solution. Here, we directly observed dynamic fluctuations of multiple Cas9 domains, using single-molecule FRET We found that the flexible domain movements allow Cas9 to adopt transient conformations beyond those captured in the crystal structures. Importantly, the HNH nuclease domain only accessed the DNA cleavage position during such flexible movements, suggesting the importance of this flexibility in the DNA cleavage process. Our FRET data also revealed the conformational flexibility of apo-Cas9, which may play a role in the assembly with the sgRNA Collectively, our results highlight the potential role of domain fluctuations in driving Cas9-catalyzed DNA cleavage.© 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.


September 22, 2019  |  

Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription.

Zero-mode waveguides (ZMWs) are photonic nanostructures that create highly confined optical observation volumes, thereby allowing single-molecule-resolved biophysical studies at relatively high concentrations of fluorescent molecules. This principle has been successfully applied in single-molecule, real-time (SMRT®) DNA sequencing for the detection of DNA sequences and DNA base modifications. In contrast, RNA sequencing methods cannot provide sequence and RNA base modifications concurrently as they rely on complementary DNA (cDNA) synthesis by reverse transcription followed by sequencing of cDNA. Thus, information on RNA modifications is lost during the process of cDNA synthesis.Here we describe an application of SMRT technology to follow the activity of reverse transcriptase enzymes synthesizing cDNA on thousands of single RNA templates simultaneously in real time with single nucleotide turnover resolution using arrays of ZMWs. This method thereby obtains information from the RNA template directly. The analysis of the kinetics of the reverse transcriptase can be used to identify RNA base modifications, shown by example for N6-methyladenine (m6A) in oligonucleotides and in a specific mRNA extracted from total cellular mRNA. Furthermore, the real-time reverse transcriptase dynamics informs about RNA secondary structure and its rearrangements, as demonstrated on a ribosomal RNA and an mRNA template.Our results highlight the feasibility of studying RNA modifications and RNA structural rearrangements in ZMWs in real time. In addition, they suggest that technology can be developed for direct RNA sequencing provided that the reverse transcriptase is optimized to resolve homonucleotide stretches in RNA.


September 22, 2019  |  

Fluorescently-tagged human eIF3 for single-molecule spectroscopy.

Human translation initiation relies on the combined activities of numerous ribosome-associated eukaryotic initiation factors (eIFs). The largest factor, eIF3, is an ~800 kDa multiprotein complex that orchestrates a network of interactions with the small 40S ribosomal subunit, other eIFs, and mRNA, while participating in nearly every step of initiation. How these interactions take place during the time course of translation initiation remains unclear. Here, we describe a method for the expression and affinity purification of a fluorescently-tagged eIF3 from human cells. The tagged eIF3 dodecamer is structurally intact, functions in cell-based assays, and interacts with the HCV IRES mRNA and the 40S-IRES complex in vitro. By tracking the binding of single eIF3 molecules to the HCV IRES RNA with a zero-mode waveguides-based instrument, we show that eIF3 samples both wild-type IRES and an IRES that lacks the eIF3-binding region, and that the high-affinity eIF3-IRES interaction is largely determined by slow dissociation kinetics. The application of single-molecule methods to more complex systems involving eIF3 may unveil dynamics underlying mRNA selection and ribosome loading during human translation initiation.© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2′-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2′-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2′-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.


September 22, 2019  |  

Dimer arrangement and monomer flattening determine actin filament formation

Actin filament dynamics underlie key cellular processes, such as cell motility. Although actin filament elongation has been extensively studied under the past decades, the mechanism of filament nucleation remains unclear. Here, we immobilized gelsolin, a pointed-end nucleator, at the bottom of zero-mode waveguides to directly monitor the early steps of filament assembly. Our data revealed extensive dynamics and that only one, of two populations, elongates. Annalysis of the kinetics revealed a more stable trimer but a less stable tetramer in the elongating population compared to the non-elongating one. Furthermore, blocking flattening, the conformational change associated with filament formation, prevented the formation of both types of assemblies. Thus, flattening and the initial monomer arrangement determine gelsolin-mediated filament initiation.


September 22, 2019  |  

Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts.

Cellular protein-RNA complexes assemble on nascent transcripts, but methods to observe transcription and protein binding in real time and at physiological concentrations are not available. Here, we report a single-molecule approach based on zero-mode waveguides that simultaneously tracks transcription progress and the binding of ribosomal protein S15 to nascent RNA transcripts during early ribosome biogenesis. We observe stable binding of S15 to single RNAs immediately after transcription for the majority of the transcripts at 35?°C but for less than half at 20?°C. The remaining transcripts exhibit either rapid and transient binding or are unable to bind S15, likely due to RNA misfolding. Our work establishes the foundation for studying transcription and its coupled co-transcriptional processes, including RNA folding, ligand binding, and enzymatic activity such as in coupling of transcription to splicing, ribosome assembly or translation.


September 21, 2019  |  

DNA-guided delivery of single molecules into zero-mode waveguides.

Zero-mode waveguides (ZMWs) are powerful analytical tools corresponding to optical nanostructures fabricated in a thin metallic film capable of confining an excitation volume to the range of attoliters. This small volume of confinement allows single-molecule fluorescence experiments to be performed at physiologically relevant concentrations of fluorescently labeled biomolecules. Exactly one molecule to be studied must be attached at the floor of the ZMW for signal detection and analysis; however, the massive parallelism of these nanoarrays suffers from a Poissonian-limited distribution of these biomolecules. To date, there is no method available that provides full single-molecule occupancy of massively arrayed ZMWs. Here we report the performance of a DNA-guided method that uses steric exclusion properties of large DNA molecules to bias the Poissonian-limited delivery of single molecules. Non-Poissonian statistics were obtained with DNA molecules that contain a free-biotinylated extremity for efficient binding to the floor of the ZMW, which resulted in a decrease of accessibility for a second molecule. Both random-coiled and condensed DNA conformations drove non-Poissonian single-molecule delivery into ZMW arrays. The results suggest that an optimal balance between the rigidity and flexibility of the macromolecule is critical for favorable accessibility and single occupancy. The optimized method provides a means for full exploitation of these massively parallelized analytical tools.


July 7, 2019  |  

Cotranslational protein folding inside the ribosome exit tunnel.

At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Coupling of mRNA structure rearrangement to ribosome movement during bypassing of non-coding regions.

Nearly half of the ribosomes translating a particular bacteriophage T4 mRNA bypass a region of 50 nt, resuming translation 3′ of this gap. How this large-scale, specific hop occurs and what determines whether a ribosome bypasses remain unclear. We apply single-molecule fluorescence with zero-mode waveguides to track individual Escherichia coli ribosomes during translation of T4’s gene 60 mRNA. Ribosomes that bypass are characterized by a 10- to 20-fold longer pause in a non-canonical rotated state at the take-off codon. During the pause, mRNA secondary structure rearrangements are coupled to ribosome forward movement, facilitated by nascent peptide interactions that disengage the ribosome anticodon-codon interactions for slippage. Close to the landing site, the ribosome then scans mRNA in search of optimal base-pairing interactions. Our results provide a mechanistic and conformational framework for bypassing, highlighting a non-canonical ribosomal state to allow for mRNA structure refolding to drive large-scale ribosome movements. Copyright © 2015 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation.

The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA-RuvB-Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA-Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA-Holliday junction DNA complex in the following order: no nucleotide, ADP, ATP?S, and mixture of ADP and ATP?S. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA-RuvB-Holliday junction DNA complex formation.


July 7, 2019  |  

Dynamic pathways of -1 translational frameshifting.

Spontaneous changes in the reading frame of translation are rare (frequency of 10(-3) to 10(-4) per codon), but can be induced by specific features in the messenger RNA (mRNA). In the presence of mRNA secondary structures, a heptanucleotide ‘slippery sequence’ usually defined by the motif X XXY YYZ, and (in some prokaryotic cases) mRNA sequences that base pair with the 3′ end of the 16S ribosomal rRNA (internal Shine-Dalgarno sequences), there is an increased probability that a specific programmed change of frame occurs, wherein the ribosome shifts one nucleotide backwards into an overlapping reading frame (-1 frame) and continues by translating a new sequence of amino acids. Despite extensive biochemical and genetic studies, there is no clear mechanistic description for frameshifting. Here we apply single-molecule fluorescence to track the compositional and conformational dynamics of individual ribosomes at each codon during translation of a frameshift-inducing mRNA from the dnaX gene in Escherichia coli. Ribosomes that frameshift into the -1 frame are characterized by a tenfold longer pause in elongation compared to non-frameshifted ribosomes, which translate through unperturbed. During the pause, interactions of the ribosome with the mRNA stimulatory elements uncouple EF-G catalysed translocation from normal ribosomal subunit reverse-rotation, leaving the ribosome in a non-canonical intersubunit rotated state with an exposed codon in the aminoacyl-tRNA site (A site). tRNA(Lys) sampling and accommodation to the empty A site and EF-G action either leads to the slippage of the tRNAs into the -1 frame or maintains the ribosome into the 0 frame. Our results provide a general mechanistic and conformational framework for -1 frameshifting, highlighting multiple kinetic branchpoints during elongation.


July 7, 2019  |  

The dynamics of SecM-induced translational stalling.

SecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation. opyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.