Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.


Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.


You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
November 1, 2018

Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts.

Cellular protein-RNA complexes assemble on nascent transcripts, but methods to observe transcription and protein binding in real time and at physiological concentrations are not available. Here, we report a single-molecule approach based on zero-mode waveguides that simultaneously tracks transcription progress and the binding of ribosomal protein S15 to nascent RNA transcripts during early ribosome biogenesis. We observe stable binding of S15 to single RNAs immediately after transcription for the majority of the transcripts at 35?°C but for less than half at 20?°C. The remaining transcripts exhibit either rapid and transient binding or are unable to bind S15, likely due to RNA…

Read More »

June 4, 2018

Nanoarrays on passivated aluminum surface for site-specific immobilization of biomolecules

The rapid development of biosensing platforms for highly sensitive and specific detection raises the desire of precise localization of biomolecules onto various material surfaces. Aluminum has been strategically employed in the biosensor system due to its compatibility with CMOS technology and its optical and electrical properties such as prominent propagation of surface plasmons. Herein, we present an adaptable method for preparation of carbon nanoarrays on aluminum surface passivated with poly(vinylphosphonic acid) (PVPA). The carbon nanoarrays were defined by means of electron beam induced deposition (EBID) and they were employed to realize site-specific immobilization of target biomolecules. To demonstrate the concept,…

Read More »

May 1, 2018

Real-time observation of flexible domain movements in CRISPR-Cas9.

The CRISPR-associated protein Cas9 is widely used for genome editing because it cleaves target DNA through the assistance of a single-guide RNA (sgRNA). Structural studies have revealed the multi-domain architecture of Cas9 and suggested sequential domain movements of Cas9 upon binding to the sgRNA and the target DNA These studies also hinted at the flexibility between domains; however, it remains unclear whether these flexible movements occur in solution. Here, we directly observed dynamic fluctuations of multiple Cas9 domains, using single-molecule FRET We found that the flexible domain movements allow Cas9 to adopt transient conformations beyond those captured in the crystal…

Read More »

April 1, 2018

Dimer arrangement and monomer flattening determine actin filament formation

Actin filament dynamics underlie key cellular processes, such as cell motility. Although actin filament elongation has been extensively studied under the past decades, the mechanism of filament nucleation remains unclear. Here, we immobilized gelsolin, a pointed-end nucleator, at the bottom of zero-mode waveguides to directly monitor the early steps of filament assembly. Our data revealed extensive dynamics and that only one, of two populations, elongates. Annalysis of the kinetics revealed a more stable trimer but a less stable tetramer in the elongating population compared to the non-elongating one. Furthermore, blocking flattening, the conformational change associated with filament formation, prevented the…

Read More »

March 1, 2018

2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation.

Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to…

Read More »

January 1, 2018

Fluorescently-tagged human eIF3 for single-molecule spectroscopy.

Human translation initiation relies on the combined activities of numerous ribosome-associated eukaryotic initiation factors (eIFs). The largest factor, eIF3, is an ~800 kDa multiprotein complex that orchestrates a network of interactions with the small 40S ribosomal subunit, other eIFs, and mRNA, while participating in nearly every step of initiation. How these interactions take place during the time course of translation initiation remains unclear. Here, we describe a method for the expression and affinity purification of a fluorescently-tagged eIF3 from human cells. The tagged eIF3 dodecamer is structurally intact, functions in cell-based assays, and interacts with the HCV IRES mRNA and…

Read More »

November 1, 2017

Research Highlights: Packing, trapping and sequencing

Ultralow concentrations of DNA can be optically sequenced with SMRT DNA sequencing. In principle, optical DNA-sequencing protocols have the advantage of reading long strands of DNA in real time and at high speeds. In practice, however, reading long DNA strands is a challenge with current methods, which require high concentrations and suffer from short- chain loading bias. To overcome these limitations, a research team led by Meni Wanunu at Northeastern University in Boston has now developed an efficient voltage-controlled DNA- loading technology that enables single molecule, real time (SMRT) sequencing of long DNA strands at ultralow concentrations.

Read More »

September 14, 2017

DNA-guided delivery of single molecules into zero-mode waveguides.

Zero-mode waveguides (ZMWs) are powerful analytical tools corresponding to optical nanostructures fabricated in a thin metallic film capable of confining an excitation volume to the range of attoliters. This small volume of confinement allows single-molecule fluorescence experiments to be performed at physiologically relevant concentrations of fluorescently labeled biomolecules. Exactly one molecule to be studied must be attached at the floor of the ZMW for signal detection and analysis; however, the massive parallelism of these nanoarrays suffers from a Poissonian-limited distribution of these biomolecules. To date, there is no method available that provides full single-molecule occupancy of massively arrayed ZMWs. Here…

Read More »

August 14, 2017

Post-termination ribosome intermediate acts as the gateway to ribosome recycling.

During termination of translation, the nascent peptide is first released from the ribosome, which must be subsequently disassembled into subunits in a process known as ribosome recycling. In bacteria, termination and recycling are mediated by the translation factors RF, RRF, EF-G, and IF3, but their precise roles have remained unclear. Here, we use single-molecule fluorescence to track the conformation and composition of the ribosome in real time during termination and recycling. Our results show that peptide release by RF induces a rotated ribosomal conformation. RRF binds to this rotated intermediate to form the substrate for EF-G that, in turn, catalyzes…

Read More »

December 2, 2016

Crystal structures of the TRIC trimeric intracellular cation channel orthologues.

Ca(2+) release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca(2+) signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels. Each trimer subunit consists of seven transmembrane (TM) helices with two inverted repeated regions. The electrophysiological, biochemical and biophysical analyses revealed that TRIC channels possess an ion-conducting…

Read More »

November 18, 2016

Structure and dynamics underlying elementary ligand binding events in human pacemaking channels.

Although molecular recognition is crucial for cellular signaling, mechanistic studies have relied primarily on ensemble measures that average over and thereby obscure underlying steps. Single-molecule observations that resolve these steps are lacking due to diffraction-limited resolution of single fluorophores at relevant concentrations. Here, we combined zero-mode waveguides with fluorescence resonance energy transfer (FRET) to directly observe binding at individual cyclic nucleotide-binding domains (CNBDs) from human pacemaker ion channels critical for heart and brain function. Our observations resolve the dynamics of multiple distinct steps underlying cyclic nucleotide regulation: a slow initial binding step that must select a 'receptive' conformation followed by…

Read More »

September 1, 2016

A comparison of single-molecule emission in aluminum and gold zero-mode waveguides.

The effect of gold and aluminum zero-mode waveguides (ZMWs) on the brightness of immobilized single emitters was characterized by probing fluorophores that absorb in the green and red regions of the visible spectrum. Aluminum ZMWs enhance the emission of Atto565 fluorophores upon green excitation, but they do not enhance the emission of Atto647N fluorophores upon red excitation. Gold ZMWs increase emission of both fluorophores with Atto647N showing enhancement that is threefold higher than that observed for Atto565. This work indicates that 200 nm gold ZMWs are better suited for single-molecule fluorescence studies in the red region of the visible spectrum,…

Read More »

June 28, 2016

Amino acid sequence repertoire of the bacterial proteome and the occurrence of untranslatable sequences.

Bioinformatic analysis of Escherichia coli proteomes revealed that all possible amino acid triplet sequences occur at their expected frequencies, with four exceptions. Two of the four underrepresented sequences (URSs) were shown to interfere with translation in vivo and in vitro. Enlarging the URS by a single amino acid resulted in increased translational inhibition. Single-molecule methods revealed stalling of translation at the entrance of the peptide exit tunnel of the ribosome, adjacent to ribosomal nucleotides A2062 and U2585. Interaction with these same ribosomal residues is involved in regulation of translation by longer, naturally occurring protein sequences. The E. coli exit tunnel…

Read More »

April 7, 2016

Multiple parallel pathways of translation initiation on the CrPV IRES.

The complexity of eukaryotic translation allows fine-tuned regulation of protein synthesis. Viruses use internal ribosome entry sites (IRESs) to minimize or, like the CrPV IRES, eliminate the need for initiation factors. Here, by exploiting the CrPV IRES, we observed the entire process of initiation and transition to elongation in real time. We directly tracked the CrPV IRES, 40S and 60S ribosomal subunits, and tRNA using single-molecule fluorescence spectroscopy and identified multiple parallel initiation pathways within the system. Our results distinguished two pathways of 80S:CrPV IRES complex assembly that produce elongation-competent complexes. Following 80S assembly, the requisite eEF2-mediated translocation results in…

Read More »

March 13, 2016

Probing the translation dynamics of ribosomes using Zero-Mode Waveguides

In order to coordinate the complex biochemical and structural feat of converting triple-nucleotide codons into their corresponding amino acids, the ribosome must physically manipulate numerous macromolecules including the mRNA, tRNAs, and numerous translation factors. The ribosome choreographs binding, dissociation, physical movements, and structural rearrangements so that they synergistically harness the energy from biochemical processes, including numerous GTP hydrolysis steps and peptide bond formation. Due to the dynamic and complex nature of translation, the large cast of ligands involved, and the large number of possible configurations, tracking the global time evolution or dynamics of the ribosome complex in translation has proven…

Read More »

1 2 3

Subscribe for blog updates: