Jonas Korlach, of PacBio, discusses the use of SMRT sequencing to detect DNA modifications.
A brief animated introduction to Pacific Biosciences’ Single Molecule, Real-Time (SMRT) Sequencing, including the SMRT Cell and ZMW (zero mode waveguide).
An animated overview of a PacBio RS instrument run, including loading samples and setting up a sequencing run.
This animation depicts a process by which single molecule SMRTbells are loaded in the Zero Mode Waveguides (ZMWs) of the PacBio RS II sequencing system using the automated MagBead Station.
The Sequel System, powered by Single Molecule, Real-Time (SMRT) Technology, delivers long reads, high consensus accuracy, uniform coverage and epigenetic characterization. This newly introduced platform provides higher throughput, a reduced footprint and lower sequencing project costs compared to the PacBio RS, the original long-read sequencer.
In this ASHG 2016 poster video, Martin Pollard from the Wellcome Trust Sanger Institute and the University of Cambridge describes an ambitious project to better represent natural variation in the complex MHC region by sequencing the locus in thousands of people from various populations in Africa. A pilot project in five populations has already revealed a lot of diversity in the region, which is important for human disease, vaccine response, and organ transplantation. Pollard says SMRT Sequencing is the only technology that can deliver the full-length haplotypes necessary to identify complete variation in this highly polymorphic complex. Plus: plans to…
PacBio’s Jenny Ekholm presents this ASHG 2016 poster on a new method being developed that enriches for unamplified DNA and uses SMRT Sequencing to characterize repeat expansion disorders. Incorporating the CRISPR/Cas9 system to target specific genes allows for amplification-free enrichment to preserve epigenetic information and avoid PCR bias. Internal studies have shown that the approach can successfully be used to target and sequence the CAG repeat responsible for Huntington’s disease, the repeat associated with ALS, and more. The approach allows for pooling many samples and sequencing with a single SMRT Cell.
This tutorial provides an overview of the Hierarchical Genome Assembly Process (HGAP4) de novo assembly analysis application. HGAP4 generates accurate de novo assemblies using only PacBio data. HGAP4 is suitable for assembling a wide range of genome sizes and complexity. HGAP4 now includes some support for diploid-aware assembly. This tutorial covers features of SMRT Link v5.0.0.
This tutorial provides an overview of the Long Amplicon Analysis (LAA) application. The LAA algorithm generates highly accurate, phased and full-length consensus sequences from long amplicons. Applications of LAA include HLA typing, alternative haplotyping, and localized de novo assemblies of targeted genes. This tutorial covers features of SMRT Link v5.0.0.
This tutorial provides an introduction to SMRT Analysis within SMRT Link. The training includes an overview of the various PacBio analysis applications and an introduction on their use. This tutorial covers features of SMRT Link v5.0.0.
This tutorial provides a high-level overview of the features contained within the SMRT Link software. SMRT Link is the web-based end-to-end software workflow manager for run design and set-up on the Sequel System, Data Management, and SMRT Analysis.
This tutorial provides an overview of the Base Modification and Motif analysis application for identifying common bacterial epigenetic modifications and analyzing methyltransferase recognition motifs. SMRT Analysis software supports epigenetic research by measuring the rate of DNA base incorporation during Single Molecule, Real-Time Sequencing. This tutorial covers features of SMRT Link v5.0.0.
This tutorial provides an overview of the Circular Consensus Sequence (CCS) analysis application. The CCS algorithm is used in applications that require distinguishing closely related DNA molecules in the same sample. Applications of CCS include profiling microbial communities, resolving viral populations and accurately identifying somatic variations within heterogeneous tumor cells. This tutorial covers features of SMRT Link v5.0.0.
PacBio SMRT Sequencing is fast changing the genomics space with its long reads and high consensus sequence accuracy, providing the most comprehensive view of the genome and transcriptome. In this webinar, I will talk about the various data analysis tools available in PacBio’s data analysis suite – SMRT Link – as well as 3rd party tools available. Key applications addressed in this talk are: Genome Assemblies, Structural Variant Analysis, Long Amplicon and Targeted Sequencing, Barcoding Strategies, Iso-Seq Analysis for Full-length Transcript Sequencing
SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.