Menu
April 21, 2020

Complete Genome Sequences of Two USA300-Related Community-Associated Methicillin-Resistant Staphylococcus aureus Clinical Isolates.

USA300 is a predominant community-associated methicillin-resistant Staphylococcus aureus strain causing significant morbidity and mortality in North America. We present the full annotated genome sequences of two methicillin-resistant Staphylococcus aureus isolates related to the USA300 pulsotype with the goal of studying the evolutionary relationships of this highly successful strain type.Copyright © 2019 McClure and Zhang.


April 21, 2020

Complete Genome Sequences of Two Methicillin-Susceptible Staphylococcus aureus Clinical Strains Closely Related to Community-Associated Methicillin-Resistant S. aureus USA300.

Predominant community-associated methicillin-resistant Staphylococcus aureus strain USA300 is believed to have originated from an ancestral methicillin-susceptible strain, although the details of that evolution remain unknown. To help understand the emergence of this highly successful strain, we sequenced the genomes of two methicillin-susceptible Staphylococcus aureus clinical strains that are very closely related to USA300. Copyright © 2019 McClure and Zhang.


April 21, 2020

Whole-Genome Sequence of an Isogenic Haploid Strain, Saccharomyces cerevisiae IR-2idA30(MATa), Established from the Industrial Diploid Strain IR-2.

We present the draft genome sequence of an isogenic haploid strain, IR-2idA30(MATa), established from Saccharomyces cerevisiae IR-2. Assembly of long reads and previously obtained contigs from the genome of diploid IR-2 resulted in 50 contigs, and the variations and sequencing errors were corrected by short reads. Copyright © 2019 Fujimori et al.


April 21, 2020

Kaposi Sarcoma-Associated Herpesvirus Glycoprotein H Is Indispensable for Infection of Epithelial, Endothelial, and Fibroblast Cell Types.

Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the virus initiates acute primary infection in vivo in diverse human cell types. The role of glycoprotein H (gH) in herpesvirus entry mechanisms remains largely unresolved. To characterize the requirement for KSHV gH in the viral life cycle and in determination of cell tropism, we generated and characterized a mutant KSHV in which expression of gH was abrogated. Using a bacterial artificial chromosome containing a complete recombinant KSHV genome and recombinant DNA technology, we inserted stop codons into the gH coding region. We used electron microscopy to reveal that the gH-null mutant virus assembled and exited from cells normally, compared to wild-type virus. Using purified virions, we assessed infectivity of the gH-null mutant in diverse mammalian cell types in vitro Unlike wild-type virus or a gH-containing revertant, the gH-null mutant was unable to infect any of the epithelial, endothelial, or fibroblast cell types tested. However, its ability to infect B cells was equivocal and remains to be investigated in vivo due to generally poor infectivity in vitro Together, these results suggest that gH is critical for KSHV infection of highly permissive cell types, including epithelial, endothelial, and fibroblast cells.IMPORTANCE All homologues of herpesvirus gH studied to date have been implicated in playing an essential role in viral infection of diverse permissive cell types. However, the role of gH in the mechanism of KSHV infection remains largely unresolved. In this study, we generated a gH-null mutant KSHV and provided evidence that deficiency of gH expression did not affect viral particle assembly or egress. Using the gH-null mutant, we showed that gH was indispensable for KSHV infection of epithelial, endothelial, and fibroblast cells in vitro This suggests that gH is an important target for the development of a KSHV prophylactic vaccine to prevent initial viral infection.Copyright © 2019 American Society for Microbiology.


April 21, 2020

Complete Genome Sequence of Achromobacter spanius UQ283, a Soilborne Isolate Exhibiting Plant Growth-Promoting Properties.

Achromobacter spanius UQ283 is a soilborne bacterium found to exhibit plant growth-promoting and disease-suppressing attributes in several plant species. Accordingly, we used long-read sequencing to determine its complete genome sequence. The assembled genome will aid in understanding the multifaceted interactions between plant growth-promoting rhizobacteria, pathogens, and plants. Copyright © 2019 Wass et al.


April 21, 2020

Genomic Islands in the Full-Genome Sequence of an NAD-Hemin-Independent Avibacterium paragallinarum Strain Isolated from Peru.

Here, we report the full-genome sequence of an NAD-hemin-independent Avibacterium paragallinarum serovar C-2 strain, FARPER-174, isolated from layer hens in Peru. This genome contained 12 potential genomic islands that include ribosomal protein-coding genes, a nadR gene, hemocin-coding genes, sequences of fagos, an rtx operon, and drug resistance genes. Copyright © 2019 Tataje-Lavanda et al.


April 21, 2020

Resequencing the Genome of Malassezia restricta Strain KCTC 27527.

The draft genome sequence of Malassezia restricta KCTC 27527, a clinical isolate from a patient with dandruff, was previously reported. Using the PacBio Sequel platform, we completed and reannotated the genome of M. restricta KCTC 27527 for a better understanding of the genome of this fungus.Copyright © 2019 Cho et al.


April 21, 2020

Genome Sequence of a California Isolate of Fusarium oxysporum f. sp. lycopersici Race 3, a Fungus Causing Wilt Disease on Tomato.

Fusarium wilt of tomato, caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, is an increasingly important disease of tomato. This paper reports the high-quality draft genome assembly of F. oxysporum f. sp. lycopersici isolate D11 (race 3), which consists of 39 scaffolds with 57,281,978?bp (GC content, 47.5%), an N50 of 4,408,267?bp, a mean read coverage of 99.8×, and 17,682 predicted genes. Copyright © 2019 Henry et al.


April 21, 2020

Transposable Elements Adaptive Role in Genome Plasticity, Pathogenicity and Evolution in Fungal Phytopathogens.

Transposable elements (TEs) are agents of genetic variability in phytopathogens as they are a source of adaptive evolution through genome diversification. Although many studies have uncovered information on TEs, the exact mechanism behind TE-induced changes within the genome remains poorly understood. Furthermore, convergent trends towards bigger genomes, emergence of novel genes and gain or loss of genes implicate a TE-regulated genome plasticity of fungal phytopathogens. TEs are able to alter gene expression by revamping the cis-regulatory elements or recruiting epigenetic control. Recent findings show that TEs recruit epigenetic control on the expression of effector genes as part of the coordinated infection strategy. In addition to genome plasticity and diversity, fungal pathogenicity is an area of economic concern. A survey of TE distribution suggests that their proximity to pathogenicity genes TEs may act as sites for emergence of novel pathogenicity factors via nucleotide changes and expansion or reduction of the gene family. Through a systematic survey of literature, we were able to conclude that the role of TEs in fungi is wide: ranging from genome plasticity, pathogenicity to adaptive behavior in evolution. This review also identifies the gaps in knowledge that requires further elucidation for a better understanding of TEs’ contribution to genome architecture and versatility.


April 21, 2020

Genome Sequence of Rhodococcus erythropolis Type Strain JCM 3201.

Rhodococcus erythropolis JCM 3201 can express several recombinant proteins that are difficult to express in Escherichia coli It is used as one of the hosts for protein expression and bioconversion. Here, we report the draft genome sequence of R. erythropolis JCM 3201. Copyright © 2019 Yoshida et al.


April 21, 2020

Genome Sequence of “Candidatus Rickettsia colombianensi,” a Novel Tick-Associated Bacterium Distributed in Colombia.

This is the first report of the genome sequence of “Candidatus Rickettsia colombianensi” strain Adcor 2, deposited in DDBJ/ENA/GenBank under the accession number RAQN00000000 The draft genome showed 36.01% similarity with that of Rickettsia monacensis strain IrR/Munich (NCBI accession number LN794217), 37.81% similarity with that of Rickettsia heilongjiangensis 054 (NCBI accession number CP002912), and 43.88% similarity with that of Rickettsia tamurae AT-1 (NCBI accession number CCMG01000001). Copyright © 2019 Miranda et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.