Menu
July 7, 2019

In planta comparative transcriptomics of host-adapted strains of Ralstonia solanacearum.

Background. Ralstonia solanacearum is an economically important plant pathogen with an unusually large host range. The Moko (banana) and NPB (not pathogenic to banana) strain groups are closely related but are adapted to distinct hosts. Previous comparative genomics studies uncovered very few differences that could account for the host range difference between these pathotypes. To better understand the basis of this host specificity, we used RNAseq to profile the transcriptomes of an R. solanacearum Moko strain and an NPB strain under in vitro and in planta conditions. Results. RNAs were sequenced from bacteria grown in rich and minimal media, and from bacteria extracted from mid-stage infected tomato, banana and melon plants. We computed differential expression between each pair of conditions to identify constitutive and host-specific gene expression differences between Moko and NPB. We found that type III secreted effectors were globally up-regulated upon plant cell contact in the NPB strain compared with the Moko strain. Genes encoding siderophore biosynthesis and nitrogen assimilation genes were highly up-regulated in the NPB strain during melon pathogenesis, while denitrification genes were up-regulated in the Moko strain during banana pathogenesis. The relatively lower expression of oxidases and the denitrification pathway during banana pathogenesis suggests that R. solanacearum experiences higher oxygen levels in banana pseudostems than in tomato or melon xylem. Conclusions. This study provides the first report of differential gene expression associated with host range variation. Despite minimal genomic divergence, the pathogenesis of Moko and NPB strains is characterized by striking differences in expression of virulence- and metabolism-related genes.


July 7, 2019

Complete genome sequence of Helicobacter pylori strain 7C isolated from a Mexican patient with chronic gastritis.

Helicobacter pylori-induced gastritis is a risk factor for developing gastric pathologies. Here, we report the complete genome sequence of a multidrug-resistant H. pylori strain isolated from a chronic gastritis patient in Mexico City, Mexico. Nonvirulent VacA and cag-pathogenicity island (PAI) genotypes were found, but the presence of a potential mobilizable plasmid carrying an IS605 element is of outstanding interest. Copyright © 2016 Mucito-Varela et al.


July 7, 2019

In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: genomic and metabolomic characterization.

In this study, we followed the genomic, lipidomic and metabolomic changes associated with the selection of miltefosine (MIL) resistance in two clinically derived Leishmania donovani strains with different inherent resistance to antimonial drugs (antimony sensitive strain Sb-S; and antimony resistant Sb-R). MIL-R was easily induced in both strains using the promastigote-stage, but a significant increase in MIL-R in the intracellular amastigote compared to the corresponding wild-type did not occur until promastigotes had adapted to 12.2 µM MIL. A variety of common and strain-specific genetic changes were discovered in MIL-adapted parasites, including deletions at the LdMT transporter gene, single-base mutations and changes in somy. The most obvious lipid changes in MIL-R promastigotes occurred to phosphatidylcholines and lysophosphatidylcholines and results indicate that the Kennedy pathway is involved in MIL resistance. The inherent Sb resistance of the parasite had an impact on the changes that occurred in MIL-R parasites, with more genetic changes occurring in Sb-R compared with Sb-S parasites. Initial interpretation of the changes identified in this study does not support synergies with Sb-R in the mechanisms of MIL resistance, though this requires an enhanced understanding of the parasite’s biochemical pathways and how they are genetically regulated to be verified fully. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.


July 7, 2019

Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M).

Tigecycline represents one of the last-line therapeutics to combat multidrug-resistant bacterial pathogens, including VRE and MRSA. The German National Reference Centre for Staphylococci and Enterococci has received 73 tigecycline-resistant Enterococcus faecium and Enterococcus faecalis isolates in recent years. The precise mechanism of how enterococci become resistant to tigecycline remains undetermined. This study documents an analysis of the role of efflux pumps in tigecycline resistance in clinical isolates of Enterococcus spp.Various tigecycline MICs were found for the different isolates analysed. Tigecycline-resistant strains were analysed with respect to genome and transcriptome differences by means of WGS and RT-qPCR. Genes of interest were cloned and expressed in Listeria monocytogenes for verification of their functionality.Detailed comparative whole-genome analyses of three isogenic strains, showing different levels of tigecycline resistance, revealed the major facilitator superfamily (MFS) efflux pump TetL and the ribosomal protection protein TetM as possible drug resistance proteins. Subsequent RT-qPCR confirmed up-regulation of the respective genes. A correlation of gene copy number and level of MIC was inferred from further qPCR analyses. Expression of both tet(L) and tet(M) in L. monocytogenes unequivocally demonstrated the potential to increase tigecycline MICs upon acquisition of either locus.Our results indicate that increased expression of two tetracycline resistance determinants, a tet(L)-encoded MFS pump and a tet(M)-encoded ribosomal protection protein, is capable of conferring tigecycline resistance in enterococcal clinical isolates.© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

The Vigna Genome Server, ‘VigGS’: A genomic knowledge base of the genus Vigna based on high-quality, annotated genome sequence of the azuki bean, Vigna angularis (Willd.) Ohwi & Ohashi.

The genus Vigna includes legume crops such as cowpea, mungbean and azuki bean, as well as >100 wild species. A number of the wild species are highly tolerant to severe environmental conditions including high-salinity, acid or alkaline soil; drought; flooding; and pests and diseases. These features of the genus Vigna make it a good target for investigation of genetic diversity in adaptation to stressful environments; however, a lack of genomic information has hindered such research in this genus. Here, we present a genome database of the genus Vigna, Vigna Genome Server (‘VigGS’, http://viggs.dna.affrc.go.jp), based on the recently sequenced azuki bean genome, which incorporates annotated exon-intron structures, along with evidence for transcripts and proteins, visualized in GBrowse. VigGS also facilitates user construction of multiple alignments between azuki bean genes and those of six related dicot species. In addition, the database displays sequence polymorphisms between azuki bean and its wild relatives and enables users to design primer sequences targeting any variant site. VigGS offers a simple keyword search in addition to sequence similarity searches using BLAST and BLAT. To incorporate up to date genomic information, VigGS automatically receives newly deposited mRNA sequences of pre-set species from the public database once a week. Users can refer to not only gene structures mapped on the azuki bean genome on GBrowse but also relevant literature of the genes. VigGS will contribute to genomic research into plant biotic and abiotic stresses and to the future development of new stress-tolerant crops.© The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.


July 7, 2019

Coproduction of KPC-18 and VIM-1 carbapenemases by Enterobacter cloacae: Implications for newer ß-lactam-ß-lactamase inhibitor combinations.

Enterobacter cloacae strain G6809 with reduced susceptibility to carbapenems was identified from a patient in a long-term acute care hospital in Kentucky. G6809 belonged to sequence type (ST) 88 and carried two carbapenemase genes, blaKPC-18 and blaVIM-1. Whole-genome sequencing localized blaKPC-18 to the chromosome and blaVIM-1 to a 58-kb plasmid. The strain was highly resistant to ceftazidime-avibactam. Insidious coproduction of metallo-ß-lactamase with KPC-type carbapenemase has implications for the use of next-generation ß-lactam-ß-lactamase inhibitor combinations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019

Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin.

Streptomyces xiamenensis 318, a moderate halophile isolated from a mangrove sediment, produces the anti-fibrotic compound xiamenmycin. The whole genome sequence of strain 318 was obtained through long-read single-molecule real-time (SMRT) sequencing, high-throughput Illumina HiSeq and 454 pyrosequencing technologies. The assembled genome comprises a linear chromosome as a single contig of 5,961,401-bp, which is considerably smaller than other reported complete genomes of the genus Streptomyces. Based on the antiSMASH pipeline, a total of 21?gene clusters were predicted to be involved in secondary metabolism. The gene cluster responsible for the biosynthesis of xiamenmycin resides in a strain-specific 61,387-bp genomic island belonging to the left-arm region. A core metabolic network consisting of 104 reactions that supports xiamenmycin biosynthesis was constructed to illustrate the necessary precursors derived from the central metabolic pathway. In accordance with the finding of a putative ikarugamycin gene cluster in the genome, the targeted chemical profiling of polycyclic tetramate macrolactams (PTMs) resulted in the identification of ikarugamycin. A successful genome mining for bioactive molecules with different skeletons suggests that the naturally minimized genome of S. xiamenensis 318 could be used as a blueprint for constructing a chassis cell with versatile biosynthetic capabilities for the production of secondary metabolites.


July 7, 2019

Purification and characterization of a novel milk-clotting metalloproteinase from Paenibacillus spp. BD3526.

In this study, a milk-clotting enzyme (MCE) isolated from Paenibacillus spp. BD3526 was purified and characterized. The MCE was purified 8.9-fold with a 10.11% recovery using ammonium sulfate precipitation and anion-exchange chromatography and the specific milk-clotting activity (MCA) reached 6791.73SU/mg. The enzyme was characterized as a 35kDa metalloproteinase, and the zymogen of which was encoded by a 1671bp gene named zinc metalloproteinase precursor (zmp) with a predicted molecular weight of 59.6kDa. The optimal temperature for MCA and proteolytic activity (PA) was 65°C and 60°C, respectively. The enzyme was stable over a pH range of 5.0-9.0 and at temperatures below 50°C. The MCA was completely inactivated when the enzyme was heated at 60°C for 30min, and the PA was totally inactivated for 20 and 10min when the enzyme was heated at 55°C and 60°C, respectively. The BD3526 enzyme was preferentially active towards ?-casein (?-CN) and ß-casein (ß-CN), as determined by sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE), whereas the hydrolysis of as-casein (as-CN) was slow and comparable to that caused by chymosin and asparatic acid proteinase from Rhizomucor miehei. The cleavage site of the metalloproteinase in ?-CN was located at the Met106-Ala107 bond, as determined by mass spectrometry analysis. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019

Whole genome sequence of the emerging oomycete pathogen Pythium insidiosum strain CDC-B5653 isolated from an infected human in the USA

Pythium insidiosum ATCC 200269 strain CDC-B5653, an isolate from necrotizing lesions on the mouth and eye of a 2-year-old boy in Memphis, Tennessee, USA, was sequenced using a combination of Illumina MiSeq (300 bp paired-end, 14 millions reads) and PacBio (10 Kb fragment library, 356,001 reads). The sequencing data were assembled using SPAdes version 3.1.0, yielding a total genome size of 45.6 Mb contained in 8992 contigs, N50 of 13 Kb, 57% G + C content, and 17,867 putative protein-coding genes. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRHR00000000.


July 7, 2019

Complete genome sequence of Corynebacterium glutamicum CP, a Chinese l-leucine producing strain.

Here, we report the complete genome sequence of Corynebacterium glutamicum CP, an industrial l-leucine producing strain in China. The whole genome consists of a circular chromosome and a plasmid. The comparative genomics analysis shows that there are many mutations in the key enzyme coding genes relevant to l-leucine biosynthesis compared to C. glutamicum ATCC 13032. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Clostridium butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory.

Clostridium butyricum is an important fragrance-producing bacterium in the traditional Chinese flavor liquor-making industry. Here the complete genome sequence of C. butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory is presented. The genome is 4,618,327bp with the GC content of 28.74% and a plasmid of 8060bp. This is the first complete genome sequence of C. butyricum strains available so far. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome of biodegradable plastics-decomposing Roseateles depolymerans KCTC 42856(T) (=61A(T)).

Roseateles depolymerans is a Gram-negative, rod-shaped, flagellated, obligately aerobic, photosynthetic bacterium that was isolated from the Hanamuro River, Ibaraki Prefecture, Japan. Here, we report the complete genome of R. depolymerans KCTC 42856(T) (=61A(T)=DSM 11813(T)=CCUG 48747(T)=NCIMB 13588(T)), which consists of 5,681,722bp (G+C content of 66.57%) with a single chromosome, 4,773 protein-coding genes, 57 tRNAs and 4 rRNA operons. Several genes related to degradation of aliphatic and aromatic polymers were detected in the genome that help explain how the strain mediates decomposition of biodegradable plastics into fragments which are then assimilated and subsequently metabolized by microbial cells. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019

Complete genome sequence of Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya.

Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium which exhibited tolerance to cold and UV radiations was isolated from the glacial stream of East Rathong glacier in Sikkim Himalaya. Here we report the 4.3 Mb complete genome assembly that has provided the basis for potential role of pigments as a survival strategy to combat stressed environment of cold and high UV-radiation and additionally the ability to produce cold active industrial enzymes. Copyright © 2016. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.