X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
November 1, 2018

Noise-Cancelling Repeat Finder: Uncovering tandem repeats in error-prone long-read sequencing data

Tandem DNA repeats can be sequenced with long-read technologies, but cannot be accurately deciphered due to the lack of computational tools taking high error rates of these technologies into account. Here we introduce Noise-Cancelling Repeat Finder (NCRF) to uncover putative tandem repeats of specified motifs in noisy long reads produced by Pacific Biosciences and Oxford Nanopore sequencers. Using simulations, we validated the use of NCRF to locate tandem repeats with motifs of various lengths and demonstrated its superior performance as compared to two alternative tools. Using real human whole-genome sequencing data, NCRF identified long arrays of the (AATGG)n repeat involved…

Read More »

October 1, 2018

TIN2 functions with TPP1/POT1 to stimulate telomerase processivity

Telomere length maintenance is crucial for cells that divide many times. TIN2 is an important regulator of telomere length, and mutations in TINF2, the gene encoding TIN2, cause short telomere syndromes. While the genetics underscore the importance of TIN2, the mechanism through which TIN2 regulates telomere length remains unclear. Here, we characterize the effects of TIN2 on telomerase activity. We identified a new isoform in human cells, TIN2M, that is expressed at similar levels to previously studied TIN2 isoforms. Additionally, we found that all three TIN2 isoforms stimulated telomerase processivity beyond the previously characterized stimulation by TPP1/POT1. Mutations in the…

Read More »

September 1, 2018

The structure of a conserved telomeric region associated with variant antigen loci in the blood parasite Trypanosoma congolense

African trypanosomiasis is a vector-borne disease of humans and livestock caused by African trypanosomes (Trypanosoma spp.). Survival in the vertebrate bloodstream depends on antigenic variation of Variant Surface Glycoproteins (VSGs) coating the parasite surface. In T. brucei, a model for antigenic variation, monoallelic VSG expression originates from dedicated VSG expression sites (VES). Trypanosoma brucei VES have a conserved structure consisting of a telomeric VSG locus downstream of unique, repeat sequences, and an independent promoter. Additional protein-coding sequences, known as "Expression Site Associated Genes (ESAGs)", are also often present and are implicated in diverse, bloodstream-stage functions. Trypanosoma congolense is a related…

Read More »

May 1, 2018

Double insertion of transposable elements provides a substrate for the evolution of satellite DNA.

Eukaryotic genomes are replete with repeated sequences in the form of transposable elements (TEs) dispersed across the genome or as satellite arrays, large stretches of tandemly repeated sequences. Many satellites clearly originated as TEs, but it is unclear how mobile genetic parasites can transform into megabase-sized tandem arrays. Comprehensive population genomic sampling is needed to determine the frequency and generative mechanisms of tandem TEs, at all stages from their initial formation to their subsequent expansion and maintenance as satellites. The best available population resources, short-read DNA sequences, are often considered to be of limited utility for analyzing repetitive DNA due…

Read More »

February 1, 2018

Cytogenomic analysis of several repetitive DNA elements in turbot (Scophthalmus maximus).

Repetitive DNA plays a fundamental role in the organization, size and evolution of eukaryotic genomes. The sequencing of the turbot revealed a small and compact genome, as in all flatfish studied to date. The assembly of repetitive regions is still incomplete because it is difficult to correctly identify their position, number and array. The combination of classical cytogenetic techniques along with high quality sequencing is essential to increase the knowledge of the structure and composition of these sequences and, thus, of the structure and function of the whole genome. In this work, the in silico analysis of H1 histone, 5S…

Read More »

September 1, 2017

Untangling heteroplasmy, structure, and evolution of an atypical mitochondrial genome by PacBio Sequencing.

The highly compact mitochondrial (mt) genome of terrestrial isopods (Oniscidae) presents two unusual features. First, several loci can individually encode two tRNAs, thanks to single nucleotide polymorphisms at anticodon sites. Within-individual variation (heteroplasmy) at these loci is thought to have been maintained for millions of years because individuals that do not carry all tRNA genes die, resulting in strong balancing selection. Second, the oniscid mtDNA genome comes in two conformations: a ~14 kb linear monomer and a ~28 kb circular dimer comprising two monomer units fused in palindrome. We hypothesized that heteroplasmy actually results from two genome units of the same dimeric…

Read More »

May 30, 2017

Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome.

Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor…

Read More »

April 1, 2017

Multiple independent changes in mitochondrial genome conformation in Chlamydomonadalean algae

Chlamydomonadalean green algae are no stranger to linear mitochondrial genomes, particularly members of the Reinhardtinia clade. At least nine different Reinhardtinia species are known to have linear mitochondrial DNAs (mtDNAs), including the model species Chlamydomonas reinhardtii. Thus, it is no surprise that some have suggested that the most recent common ancestor of the Reinhardtinia clade had a linear mtDNA. But the recent uncovering of circular-mapping mtDNAs in a range of Reinhardtinia algae, such as Volvox carteri and Tetrabaena socialis, has shed doubt on this hypothesis. Here, we explore mtDNA sequence and structure within the colonial Reinhardtinia algae Yamagishiella unicocca and…

Read More »

March 28, 2017

Genome sequencing and analysis of Talaromyces pinophilus provide insights into biotechnological applications.

Species from the genus Talaromyces produce useful biomass-degrading enzymes and secondary metabolites. However, these enzymes and secondary metabolites are still poorly understood and have not been explored in depth because of a lack of comprehensive genetic information. Here, we report a 36.51-megabase genome assembly of Talaromyces pinophilus strain 1-95, with coverage of nine scaffolds of eight chromosomes with telomeric repeats at their ends and circular mitochondrial DNA. In total, 13,472 protein-coding genes were predicted. Of these, 803 were annotated to encode enzymes that act on carbohydrates, including 39 cellulose-degrading and 24 starch-degrading enzymes. In addition, 68 secondary metabolism gene clusters…

Read More »

March 1, 2017

Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff.

Malassezia species are opportunistic pathogenic fungi that are frequently associated with seborrhoeic dermatitis, including dandruff. Most Malassezia species are lipid dependent, a property that is compensated by breaking down host sebum into fatty acids by lipases. In this study, we aimed to sequence and analyse the whole genome of Malassezia restricta KCTC 27527, a clinical isolate from a Korean patient with severe dandruff, to search for lipase orthologues and identify the lipase that is the most frequently expressed on the scalp of patients with dandruff. The genome of M. restricta KCTC 27527 was sequenced using the Illumina MiSeq and PacBio platforms.…

Read More »

January 1, 2017

A gapless genome sequence of the fungus Botrytis cinerea.

Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, we here report a gapless, near-finished genome sequence for B. cinerea strain B05.10. The assembly comprises 18 chromosomes and was confirmed by an optical map and a genetic map based on ~75 000 SNP markers. All chromosomes contain fully assembled centromeric regions, and 10 chromosomes have telomeres on both ends. The genetic map consisted of 4153 cM and comparison of genetic distances with the physical distances identified 40 recombination hotspots. The linkage map also identified two mutations, located in the previously described genes Bos1…

Read More »

December 1, 2016

TeloPCR-seq: a high-throughput sequencing approach for telomeres.

We have developed a high-throughput sequencing approach that enables us to determine terminal telomere sequences from tens of thousands of individual Schizosaccharomyces pombe telomeres. This method provides unprecedented coverage of telomeric sequence complexity in fission yeast. S. pombe telomeres are composed of modular degenerate repeats that can be explained by variation in usage of the TER1 RNA template during reverse transcription. Taking advantage of this deep sequencing approach, we find that 'like' repeat modules are highly correlated within individual telomeres. Moreover, repeat module preference varies with telomere length, suggesting that existing repeats promote the incorporation of like repeats and/or that…

Read More »

October 10, 2016

Refined Pichia pastoris reference genome sequence.

Strains of the species Komagataella phaffii are the most frequently used "Pichia pastoris" strains employed for recombinant protein production as well as studies on peroxisome biogenesis, autophagy and secretory pathway analyses. Genome sequencing of several different P. pastoris strains has provided the foundation for understanding these cellular functions in recent genomics, transcriptomics and proteomics experiments. This experimentation has identified mistakes, gaps and incorrectly annotated open reading frames in the previously published draft genome sequences. Here, a refined reference genome is presented, generated with genome and transcriptome sequencing data from multiple P. pastoris strains. Twelve major sequence gaps from 20 to…

Read More »

August 1, 2016

Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome through long-read (>11?kb), single molecule, real-time sequencing.

The application of next-generation sequencing to estimate genetic diversity of Plasmodium falciparum, the most lethal malaria parasite, has proved challenging due to the skewed AT-richness [~80.6% (A?+?T)] of its genome and the lack of technology to assemble highly polymorphic subtelomeric regions that contain clonally variant, multigene virulence families (Ex: var and rifin). To address this, we performed amplification-free, single molecule, real-time sequencing of P. falciparum genomic DNA and generated reads of average length 12?kb, with 50% of the reads between 15.5 and 50?kb in length. Next, using the Hierarchical Genome Assembly Process, we assembled the P. falciparum genome de novo…

Read More »

July 1, 2016

TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe.

Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant…

Read More »

1 2

Subscribe for blog updates:

Archives