Menu
July 19, 2019  |  

Mapping the landscape of tandem repeat variability by targeted long read single molecule sequencing in familial X-linked intellectual disability.

The etiology of more than half of all patients with X-linked intellectual disability remains elusive, despite array-based comparative genomic hybridization, whole exome or genome sequencing. Since short read massive parallel sequencing approaches do not allow the detection of larger tandem repeat expansions, we hypothesized that such expansions could be a hidden cause of X-linked intellectual disability.We selectively captured over 1800 tandem repeats on the X chromosome and characterized them by long read single molecule sequencing in 3 families with idiopathic X-linked intellectual disability. In male DNA samples, full tandem repeat length sequences were obtained for 88-93% of the targets and up to 99.6% of the repeats with a moderate guanine-cytosine content. Read length and analysis pipeline allow to detect cases of >?900?bp tandem repeat expansion. In one family, one repeat expansion co-occurs with down-regulation of the neighboring MIR222 gene. This gene has previously been implicated in intellectual disability and is apparently linked to FMR1 and NEFH overexpression associated with neurological disorders.This study demonstrates the power of single molecule sequencing to measure tandem repeat lengths and detect expansions, and suggests that tandem repeat mutations may be a hidden cause of X-linked intellectual disability.


July 7, 2019  |  

Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.


July 7, 2019  |  

Whole-exome targeted sequencing of the uncharacterized pine genome.

The large genome size of many species hinders the development and application of genomic tools to study them. For instance, loblolly pine (Pinus taeda L.), an ecologically and economically important conifer, has a large and yet uncharacterized genome of 21.7 Gbp. To characterize the pine genome, we performed exome capture and sequencing of 14 729 genes derived from an assembly of expressed sequence tags. Efficiency of sequence capture was evaluated and shown to be similar across samples with increasing levels of complexity, including haploid cDNA, haploid genomic DNA and diploid genomic DNA. However, this efficiency was severely reduced for probes that overlapped multiple exons, presumably because intron sequences hindered probe:exon hybridizations. Such regions could not be entirely avoided during probe design, because of the lack of a reference sequence. To improve the throughput and reduce the cost of sequence capture, a method to multiplex the analysis of up to eight samples was developed. Sequence data showed that multiplexed capture was reproducible among 24 haploid samples, and can be applied for high-throughput analysis of targeted genes in large populations. Captured sequences were de novo assembled, resulting in 11 396 expanded and annotated gene models, significantly improving the knowledge about the pine gene space. Interspecific capture was also evaluated with over 98% of all probes designed from P. taeda that were efficient in sequence capture, were also suitable for analysis of the related species Pinus elliottii Engelm.© 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.


July 7, 2019  |  

Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum.

Anaplasma phagocytophilum is an intracellular organism in the Order Rickettsiales that infects diverse animal species and is causing an emerging disease in humans, dogs and horses. Different strains have very different cell tropisms and virulence. For example, in the U.S., strains have been described that infect ruminants but not dogs or rodents. An intriguing question is how the strains of A. phagocytophilum differ and what different genome loci are involved in cell tropisms and/or virulence. Type IV secretion systems (T4SS) are responsible for translocation of substrates across the cell membrane by mechanisms that require contact with the recipient cell. They are especially important in organisms such as the Rickettsiales which require T4SS to aid colonization and survival within both mammalian and tick vector cells. We determined the structure of the T4SS in 7 strains from the U.S. and Europe and revised the sequence of the repetitive virB6 locus of the human HZ strain.Although in all strains the T4SS conforms to the previously described split loci for vir genes, there is great diversity within these loci among strains. This is particularly evident in the virB2 and virB6 which are postulated to encode the secretion channel and proteins exposed on the bacterial surface. VirB6-4 has an unusual highly repetitive structure and can have a molecular weight greater than 500,000. For many of the virs, phylogenetic trees position A. phagocytophilum strains infecting ruminants in the U.S. and Europe distant from strains infecting humans and dogs in the U.S.Our study reveals evidence of gene duplication and considerable diversity of T4SS components in strains infecting different animals. The diversity in virB2 is in both the total number of copies, which varied from 8 to 15 in the herein characterized strains, and in the sequence of each copy. The diversity in virB6 is in the sequence of each of the 4 copies in the single locus and the presence of varying numbers of repetitive units in virB6-3 and virB6-4. These data suggest that the T4SS should be investigated further for a potential role in strain virulence of A. phagocytophilum.


July 7, 2019  |  

Cancer genomics: technology, discovery, and translation.

In recent years, the increasing awareness that somatic mutations and other genetic aberrations drive human malignancies has led us within reach of personalized cancer medicine (PCM). The implementation of PCM is based on the following premises: genetic aberrations exist in human malignancies; a subset of these aberrations drive oncogenesis and tumor biology; these aberrations are actionable (defined as having the potential to affect management recommendations based on diagnostic, prognostic, and/or predictive implications); and there are highly specific anticancer agents available that effectively modulate these targets. This article highlights the technology underlying cancer genomics and examines the early results of genome sequencing and the challenges met in the discovery of new genetic aberrations. Finally, drawing from experiences gained in a feasibility study of somatic mutation genotyping and targeted exome sequencing led by Princess Margaret Hospital-University Health Network and the Ontario Institute for Cancer Research, the processes, challenges, and issues involved in the translation of cancer genomics to the clinic are discussed.


July 7, 2019  |  

An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia.

To define the mutation spectrum in non-Down syndrome acute megakaryoblastic leukemia (non-DS-AMKL), we performed transcriptome sequencing on diagnostic blasts from 14 pediatric patients and validated our findings in a recurrency/validation cohort consisting of 34 pediatric and 28 adult AMKL samples. Our analysis identified a cryptic chromosome 16 inversion (inv(16)(p13.3q24.3)) in 27% of pediatric cases, which encodes a CBFA2T3-GLIS2 fusion protein. Expression of CBFA2T3-GLIS2 in Drosophila and murine hematopoietic cells induced bone morphogenic protein (BMP) signaling and resulted in a marked increase in the self-renewal capacity of hematopoietic progenitors. These data suggest that expression of CBFA2T3-GLIS2 directly contributes to leukemogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.


July 7, 2019  |  

ConcatSeq: A method for increasing throughput of single molecule sequencing by concatenating short DNA fragments.

Single molecule sequencing (SMS) platforms enable base sequences to be read directly from individual strands of DNA in real-time. Though capable of long read lengths, SMS platforms currently suffer from low throughput compared to competing short-read sequencing technologies. Here, we present a novel strategy for sequencing library preparation, dubbed ConcatSeq, which increases the throughput of SMS platforms by generating long concatenated templates from pools of short DNA molecules. We demonstrate adaptation of this technique to two target enrichment workflows, commonly used for oncology applications, and feasibility using PacBio single molecule real-time (SMRT) technology. Our approach is capable of increasing the sequencing throughput of the PacBio RSII platform by more than five-fold, while maintaining the ability to correctly call allele frequencies of known single nucleotide variants. ConcatSeq provides a versatile new sample preparation tool for long-read sequencing technologies.


July 7, 2019  |  

Single-locus enrichment without amplification for sequencing and direct detection of epigenetic modifications.

A gene-level targeted enrichment method for direct detection of epigenetic modifications is described. The approach is demonstrated on the CGG-repeat region of the FMR1 gene, for which large repeat expansions, hitherto refractory to sequencing, are known to cause fragile X syndrome. In addition to achieving a single-locus enrichment of nearly 700,000-fold, the elimination of all amplification steps removes PCR-induced bias in the repeat count and preserves the native epigenetic modifications of the DNA. In conjunction with the single-molecule real-time sequencing approach, this enrichment method enables direct readout of the methylation status and the CGG repeat number of the FMR1 allele(s) for a clonally derived cell line. The current method avoids potential biases introduced through chemical modification and/or amplification methods for indirect detection of CpG methylation events.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.