Menu
September 22, 2019  |  

A high-resolution genetic map of the cereal crown rot pathogen Fusarium pseudograminearum provides a near-complete genome assembly.

Fusarium pseudograminearum is an important pathogen of wheat and barley, particularly in semi-arid environments. Previous genome assemblies for this organism were based entirely on short read data and are highly fragmented. In this work, a genetic map of F. pseudograminearum has been constructed for the first time based on a mapping population of 178 individuals. The genetic map, together with long read scaffolding of a short read-based genome assembly, was used to give a near-complete assembly of the four F. pseudograminearum chromosomes. Large regions of synteny between F. pseudograminearum and F. graminearum, the related pathogen that is the primary causal agent of cereal head blight disease, were previously proposed in the core conserved genome, but the construction of a genetic map to order and orient contigs is critical to the validation of synteny and the placing of species-specific regions. Indeed, our comparative analyses of the genomes of these two related pathogens suggest that rearrangements in the F. pseudograminearum genome have occurred in the chromosome ends. One of these rearrangements includes the transposition of an entire gene cluster involved in the detoxification of the benzoxazolinone (BOA) class of plant phytoalexins. This work provides an important genomic and genetic resource for F. pseudograminearum, which is less well characterized than F. graminearum. In addition, this study provides new insights into a better understanding of the sexual reproduction process in F. pseudograminearum, which informs us of the potential of this pathogen to evolve.© 2016 BSPP AND JOHN WILEY & SONS LTD.


September 22, 2019  |  

Contemporary evolution of a Lepidopteran species, Heliothis virescens, in response to modern agricultural practices.

Adaptation to human-induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton-feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt-cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD-seq-enabled genome scan to identify loci with significant allele frequency changes over the 15-year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed.© 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

Assembly and analysis of a qingke reference genome demonstrate its close genetic relation to modern cultivated barley.

Qingke, the local name of hulless barley in the Tibetan Plateau, is a staple food for Tibetans. The availability of its reference genome sequences could be useful for studies on breeding and molecular evolution. Taking advantage of the third-generation sequencer (PacBio), we de novo assembled a 4.84-Gb genome sequence of qingke, cv. Zangqing320 and anchored a 4.59-Gb sequence to seven chromosomes. Of the 46,787 annotated ‘high-confidence’ genes, 31 564 were validated by RNA-sequencing data of 39 wild and cultivated barley genotypes with wide genetic diversity, and the results were also confirmed by nonredundant protein database from NCBI. As some gaps in the reference genome of Morex were covered in the reference genome of Zangqing320 by PacBio reads, we believe that the Zangqing320 genome provides the useful supplements for the Morex genome. Using the qingke genome as a reference, we conducted a genome comparison, revealing a close genetic relationship between a hulled barley (cv. Morex) and a hulless barley (cv. Zangqing320), which is strongly supported by the low-diversity regions in the two genomes. Considering the origin of Morex from its breeding pedigree, we then demonstrated a close genomic relationship between modern cultivated barley and qingke. Given this genomic relationship and the large genetic diversity between qingke and modern cultivated barley, we propose that qingke could provide elite genes for barley improvement.© 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


September 22, 2019  |  

Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris.

A parasitic lifestyle, where plants procure some or all of their nutrients from other living plants, has evolved independently in many dicotyledonous plant families and is a major threat for agriculture globally. Nevertheless, no genome sequence of a parasitic plant has been reported to date. Here we describe the genome sequence of the parasitic field dodder, Cuscuta campestris. The genome contains signatures of a fairly recent whole-genome duplication and lacks genes for pathways superfluous to a parasitic lifestyle. Specifically, genes needed for high photosynthetic activity are lost, explaining the low photosynthesis rates displayed by the parasite. Moreover, several genes involved in nutrient uptake processes from the soil are lost. On the other hand, evidence for horizontal gene transfer by way of genomic DNA integration from the parasite’s hosts is found. We conclude that the parasitic lifestyle has left characteristic footprints in the C. campestris genome.


September 22, 2019  |  

Genome survey of the freshwater mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) using a hybrid de novo assembly approach.

Freshwater mussels (Bivalvia: Unionida) serve an important role as aquatic ecosystem engineers but are one of the most critically imperilled groups of animals. Here, we used a combination of sequencing strategies to assemble and annotate a draft genome of Venustaconcha ellipsiformis, which will serve as a valuable genomic resource given the ecological value and unique “doubly uniparental inheritance” mode of mitochondrial DNA transmission of freshwater mussels. The genome described here was obtained by combining high-coverage short reads (65× genome coverage of Illumina paired-end and 11× genome coverage of mate-pairs sequences) with low-coverage Pacific Biosciences long reads (0.3× genome coverage). Briefly, the final scaffold assembly accounted for a total size of 1.54?Gb (366,926 scaffolds, N50?=?6.5 kb, with 2.3% of “N” nucleotides), representing 86% of the predicted genome size of 1.80?Gb, while over one third of the genome (37.5%) consisted of repeated elements and >85% of the core eukaryotic genes were recovered. Given the repeated genetic bottlenecks of V. ellipsiformis populations as a result of glaciations events, heterozygosity was also found to be remarkably low (0.6%), in contrast to most other sequenced bivalve species. Finally, we reassembled the full mitochondrial genome and found six polymorphic sites with respect to the previously published reference. This resource opens the way to comparative genomics studies to identify genes related to the unique adaptations of freshwater mussels and their distinctive mitochondrial inheritance mechanism.


September 22, 2019  |  

Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus.

The copepod Tigriopus californicus shows extensive population divergence and is becoming a model for understanding allopatric differentiation and the early stages of speciation. Here, we report a high-quality reference genome for one population (~190?megabases across 12 scaffolds, and ~15,500 protein-coding genes). Comparison with other arthropods reveals 2,526 genes presumed to be specific to T. californicus, with an apparent proliferation of genes involved in ion transport and receptor activity. Beyond the reference population, we report re-sequenced genomes of seven additional populations, spanning the continuum of reproductive isolation. Populations show extreme mitochondrial DNA divergence, with higher levels of amino acid differentiation than observed in other taxa. Across the nuclear genome, we find elevated protein evolutionary rates and positive selection in genes predicted to interact with mitochondrial DNA and the proteins and RNA it encodes in multiple pathways. Together, these results support the hypothesis that rapid mitochondrial evolution drives compensatory nuclear evolution within isolated populations, thereby providing a potentially important mechanism for causing intrinsic reproductive isolation.


September 21, 2019  |  

Whole genome sequence of the soybean aphid, Aphis glycines.

Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only three aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, the Russian wheat aphid, Diuraphis noxia, and the green peach aphid, Myzus persicae. We present the whole genome sequence of a fourth aphid, the soybean aphid (Aphis glycines), which is an extreme specialist and an important invasive pest of soybean (Glycine max). The availability of genomic resources is important to establish effective and sustainable pest control, as well as to expand our understanding of aphid evolution. We generated a 302.9 Mbp draft genome assembly for Ap. glycines using a hybrid sequencing approach. This assembly shows high completeness with 19,182 predicted genes, 92% of known Ap. glycines transcripts mapping to contigs, and substantial continuity with a scaffold N50 of 174,505 bp. The assembly represents 95.5% of the predicted genome size of 317.1 Mbp based on flow cytometry. Ap. glycines contains the smallest known aphid genome to date, based on updated genome sizes for 19 aphid species. The repetitive DNA content of the Ap. glycines genome assembly (81.6 Mbp or 26.94% of the 302.9 Mbp assembly) shows a reduction in the number of classified transposable elements compared to Ac. pisum, and likely contributes to the small estimated genome size. We include comparative analyses of gene families related to host-specificity (cytochrome P450’s and effectors), which may be important in Ap. glycines evolution. This Ap. glycines draft genome sequence will provide a resource for the study of aphid genome evolution, their interaction with host plants, and candidate genes for novel insect control methods. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 19, 2019  |  

Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution.

The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. First, we whole-genome-sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Second, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Third, we incorporated ~20x coverage of Pacific Biosciences sequencing, and scaffolded the haploid genome using an assembly of this long-read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an N50 length of 2.1 Mb, an N50 number of 34, and with 99% of the genome placed, and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million yr. Copyright © 2016 Davey et al.


July 19, 2019  |  

Improved maize reference genome with single-molecule technologies.

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


July 7, 2019  |  

A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop.

Field pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress. To generate a draft genome, a hybrid sequencing approach was used to generate 47 Gb of DNA sequencing reads from both the Illumina and PacBio platforms. These reads were used to assemble 6,768 genomic scaffolds. The draft genome was annotated using the MAKER pipeline, which identified 27,390 predicted protein-coding genes, with almost all of these predicted peptides having significant sequence similarity to Arabidopsis proteins. A comprehensive analysis of pennycress gene homologues involved in glucosinolate biosynthesis, metabolism, and transport pathways revealed high sequence conservation compared with other Brassicaceae species, and helps validate the assembly of the pennycress gene space in this draft genome. Additional comparative genomic analyses indicate that the knowledge gained from years of basic Brassicaceae research will serve as a powerful tool for identifying gene targets whose manipulation can be predicted to result in improvements for pennycress. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri.

Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656?rtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics.

Kitasatospora cheerisanensis KCTC 2395, producing bafilomycin antibiotics belonging to plecomacrolide group, was isolated from a soil sample at Mt. Jiri, Korea. The draft genome sequence contains 8.04 Mb with 73.6% G+C content and 7,810 open reading frames. All the genes for aerial mycelium and spore formations were confirmed in this draft genome. In phylogenetic analysis of MurE proteins (UDP-N-acetylmuramyl-L-alanyl-D-glutamate:DAP ligase) in a conserved dcw (division of cell wall) locus, MurE proteins of Kitasatospora species were placed in a separate clade between MurEs of Streptomyces species incorporating LL-diaminopimelic acid (DAP) and MurEs of Saccharopolyspora erythraea as well as Mycobacterium tuberculosis ligating meso-DAP. From this finding, it was assumed that Kitasatospora MurEs exhibit the substrate specificity for both LL-DAP and meso-DAP. The bafilomycin biosynthetic gene cluster was located in the left subtelomeric region. In 71.3 kb-long gene cluster, 17 genes probably involved in the biosynthesis of bafilomycin derivatives were deduced, including 5 polyketide synthase (PKS) genes comprised of 12 PKS modules.


July 7, 2019  |  

Genomes of ‘Candidatus Liberibacter solanacearum’ Haplotype A from New Zealand and the United States Suggest Significant Genome Plasticity in the Species.

‘Candidatus Liberibacter solanacearum’ contains two solanaceous crop-infecting haplotypes, A and B. Two haplotype A draft genomes were assembled and compared with ZC1 (haplotype B), revealing inversion and relocation genomic rearrangements, numerous single-nucleotide polymorphisms, and differences in phage-related regions. Differences in prophage location and sequence were seen both within and between haplotype comparisons. OrthoMCL and BLAST analyses identified 46 putative coding sequences present in haplotype A that were not present in haplotype B. Thirty-eight of these loci were not found in sequences from other Liberibacter spp. Quantitative polymerase chain reaction (qPCR) assays designed to amplify sequences from 15 of these loci were screened against a panel of ‘Ca. L. solanacearum’-positive samples to investigate genetic diversity. Seven of the assays demonstrated within-haplotype diversity; five failed to amplify loci in at least one haplotype A sample while three assays produced amplicons from some haplotype B samples. Eight of the loci assays showed consistent A-B differentiation. Differences in genome arrangements, prophage, and qPCR results suggesting locus diversity within the haplotypes provide more evidence for genetic complexity in this emerging bacterial species.


July 7, 2019  |  

Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia.

Comparative genomics from mitochondria, plastids, and mutualistic endosymbiotic bacteria has shown that the stable establishment of a bacterium in a host cell results in genome reduction. Although many highly reduced genomes from endosymbiotic bacteria are stable in gene content and genome structure, organelle genomes are sometimes characterized by dramatic structural diversity. Previous results from Candidatus Hodgkinia cicadicola, an endosymbiont of cicadas, revealed that some lineages of this bacterium had split into two new cytologically distinct yet genetically interdependent species. It was hypothesized that the long life cycle of cicadas in part enabled this unusual lineage-splitting event. Here we test this hypothesis by investigating the structure of the Ca. Hodgkinia genome in one of the longest-lived cicadas, Magicicada tredecim. We show that the Ca. Hodgkinia genome from M. tredecim has fragmented into multiple new chromosomes or genomes, with at least some remaining partitioned into discrete cells. We also show that this lineage-splitting process has resulted in a complex of Ca. Hodgkinia genomes that are 1.1-Mb pairs in length when considered together, an almost 10-fold increase in size from the hypothetical single-genome ancestor. These results parallel some examples of genome fragmentation and expansion in organelles, although the mechanisms that give rise to these extreme genome instabilities are likely different.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.