Menu
September 22, 2019  |  

Periodic pattern of genetic and fitness diversity during evolution of an artificial cell-like system.

Genetic and phenotypic diversity are the basis of evolution. Despite their importance, however, little is known about how they change over the course of evolution. In this study, we analyzed the dynamics of the adaptive evolution of a simple evolvable artificial cell-like system using single-molecule real-time sequencing technology that reads an entire single artificial genome. We found that the genomic RNA population increases in fitness intermittently, correlating with a periodic pattern of genetic and fitness diversity produced by repeated diversification and domination. In the diversification phase, a genomic RNA population spreads within a genetic space by accumulating mutations until mutants with higher fitness are generated, resulting in an increase in fitness diversity. In the domination phase, the mutants with higher fitness dominate, decreasing both the fitness and genetic diversity. This study reveals the dynamic nature of genetic and fitness diversity during adaptive evolution and demonstrates the utility of a simplified artificial cell-like system to study evolution at an unprecedented resolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 22, 2019  |  

Sequence of the sugar pine megagenome.

Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome. It is the largest genome sequenced and assembled to date, and the first from the subgenus Strobus, or white pines, a group that is notable for having the largest genomes among the pines. The genome represents a unique opportunity to investigate genome “obesity” in conifers and white pines. Comparative analysis of P. lambertiana and P. taeda L. reveals new insights on the conservation, age, and diversity of the highly abundant transposable elements, the primary factor determining genome size. Like most North American white pines, the principal pathogen of P. lambertiana is white pine blister rust (Cronartium ribicola J.C. Fischer ex Raben.). Identification of candidate genes for resistance to this pathogen is of great ecological importance. The genome sequence afforded us the opportunity to make substantial progress on locating the major dominant gene for simple resistance hypersensitive response, Cr1 We describe new markers and gene annotation that are both tightly linked to Cr1 in a mapping population, and associated with Cr1 in unrelated sugar pine individuals sampled throughout the species’ range, creating a solid foundation for future mapping. This genomic variation and annotated candidate genes characterized in our study of the Cr1 region are resources for future marker-assisted breeding efforts as well as for investigations of fundamental mechanisms of invasive disease and evolutionary response. Copyright © 2016 by the Genetics Society of America.


September 22, 2019  |  

A manganese superoxide dismutase (MnSOD) from red lip mullet, Liza haematocheila: Evaluation of molecular structure, immune response, and antioxidant function.

Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant metalloenzyme. The main function of this enzyme is to dismutase the toxic superoxide anion (O2-) into less toxic hydrogen peroxide (H2O2) and oxygen (O2). Structural analysis of mullet MnSOD (MuMnSOD) was performed using different bioinformatics tools. Pairwise alignment revealed that the protein sequence matched to that derived from Larimichthys crocea with a 95.2% sequence identity. Phylogenetic tree analysis showed that the MuMnSOD was included in the category of teleosts. Multiple sequence alignment showed that a SOD Fe-N domain, SOD Fe-C domain, and Mn/Fe SOD signature were highly conserved among the other examined MnSOD orthologs. Quantitative real-time PCR showed that the highest MuMnSOD mRNA expression level was in blood cells. The highest expression level of MuMnSOD was observed in response to treatment with both Lactococcus garvieae and lipopolysaccharide (LPS) at 6?h post treatment in the head kidney and blood. Potential ROS-scavenging ability of the purified recombinant protein (rMuMnSOD) was examined by the xanthine oxidase assay (XOD assay). The optimum temperature and pH for XOD activity were found to be 25?°C and pH 7, respectively. Relative XOD activity was significantly increased with the dose of rMuMnSOD, revealing its dose dependency. Activity of rMuMnSOD was inhibited by potassium cyanide (KCN) and N-N’-diethyl-dithiocarbamate (DDC). Moreover, expression of MuMnSOD resulted in considerable growth retardation of both gram-positive and gram-negative bacteria. Results of the current study suggest that MuMnSOD acts as an antioxidant enzyme and participates in the immune response in mullet. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications.

Moso bamboo (Phyllostachys edulis) is a well-known bamboo species of high economic value in the textile industry due to its rapid growth. Phytohormones, which are master regulators of growth and development, serve as important endogenous signals. However, the mechanisms through which phytohormones regulate growth in moso bamboo remain unknown to date.Here, we reported that exogenous gibberellins (GA) applications resulted in a significantly increased internode length and lignin condensation. Transcriptome sequencing revealed that photosynthesis-related genes were enriched in the GA-repressed gene class, which was consistent with the decrease in leaf chlorophyll concentrations and the lower rate of photosynthesis following GA treatment. Exogenous GA applications on seedlings are relatively easy to perform, thus we used 4-week-old whole seedlings of bamboo for GA- treatment followed by high throughput sequencing. In this study, we identified 932 cis-nature antisense transcripts (cis-NATs), and 22,196 alternative splicing (AS) events in total. Among them, 42 cis-nature antisense transcripts (cis-NATs) and 442 AS events were differentially expressed upon exposure to exogenous GA3, suggesting that post-transcriptional regulation might be also involved in the GA3 response. Targets of differential expression of cis-NATs included genes involved in hormone receptor, photosynthesis and cell wall biogenesis. For example, LAC4 and its corresponding cis-NATs were GA3-induced, and may be involved in the accumulation of lignin, thus affecting cell wall composition.This study provides novel insights illustrating how GA alters post-transcriptional regulation and will shed light on the underlying mechanism of growth modulated by GA in moso bamboo.


September 22, 2019  |  

Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing.

Switchgrass (Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts.We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures.Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.


September 22, 2019  |  

Human and rhesus macaque KIR haplotypes defined by their transcriptomes.

The killer-cell Ig-like receptors (KIRs) play a central role in the immune recognition in infection, pregnancy, and transplantation through their interactions with MHC class I molecules. KIR genes display abundant copy number variation as well as high levels of polymorphism. As a result, it is challenging to characterize this structurally dynamic region. KIR haplotypes have been analyzed in different species using conventional characterization methods, such as Sanger sequencing and Roche/454 pyrosequencing. However, these methods are time-consuming and often failed to define complete haplotypes, or do not reach allele-level resolution. In addition, most analyses were performed on genomic DNA, and thus were lacking substantial information about transcription and its corresponding modifications. In this paper, we present a single-molecule real-time sequencing approach, using Pacific Biosciences Sequel platform to characterize the KIR transcriptomes in human and rhesus macaque (Macaca mulatta) families. This high-resolution approach allowed the identification of novel Mamu-KIR alleles, the extension of reported allele sequences, and the determination of human and macaque KIR haplotypes. In addition, multiple recombinant KIR genes were discovered, all located on contracted haplotypes, which were likely the result of chromosomal rearrangements. The relatively high number of contracted haplotypes discovered might be indicative of selection on small KIR repertoires and/or novel fusion gene products. This next-generation method provides an improved high-resolution characterization of the KIR cluster in humans and macaques, which eventually may aid in a better understanding and interpretation of KIR allele-associated diseases, as well as the immune response in transplantation and reproduction. Copyright © 2018 by The American Association of Immunologists, Inc.


September 22, 2019  |  

A carnivorous plant genetic map: pitcher/insect-capture QTL on a genetic linkage map of Sarracenia.

The study of carnivorous plants can afford insight into their unique evolutionary adaptations and their interactions with prokaryotic and eukaryotic species. For Sarracenia (pitcher plants), we identified 64 quantitative trait loci (QTL) for insect-capture traits of the pitchers, providing the genetic basis for differences between the pitfall and lobster-trap strategies of insect capture. The linkage map developed here is based upon the F2 of a cross between Sarracenia rosea and Sarracenia psittacina; we mapped 437 single nucleotide polymorphism and simple sequence repeat markers. We measured pitcher traits which differ between S. rosea and S. psittacina, mapping 64 QTL for 17 pitcher traits; there are hot-spot locations where multiple QTL map near each other. There are epistatic interactions in many cases where there are multiple loci for a trait. The QTL map uncovered the genetic basis for the differences between pitfall- and lobster-traps, and the changes that occurred during the divergence of these species. The longevity and clonability of Sarracenia plants make the F2 mapping population a resource for mapping more traits and for phenotype-to-genotype studies.


September 22, 2019  |  

Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing.

Red clover (Trifolium pratense L.) is an important cool-season legume plant, which is the most widely planted forage legume after alfalfa. Although a draft genome sequence was published already, the sequences and completed structure of mRNA transcripts remain unclear, which limit further explore on red clover.In this study, the red clover transcriptome was sequenced using single-molecule long-read sequencing to identify full-length splice isoforms, and 29,730 novel isoforms from known genes and 2194 novel isoforms from novel genes were identified. A total of 5492 alternative splicing events was identified and the majority of alter spliced events in red clover was corrected as intron retention. In addition, of the 15,229 genes detected by SMRT, 8719 including 186,517 transcripts have at least one poly(A) site. Furthermore, we identified 4333 long non-coding RNAs and 3762 fusion transcripts.We analyzed full-length transcriptome of red clover with PacBio SMRT. Those new findings provided important information for improving red clover draft genome annotation and fully characterization of red clover transcriptome.


September 22, 2019  |  

Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis.

Nuclear genes of euglenids and marine diplonemids harbor atypical, nonconventional introns which are not observed in the genomes of other eukaryotes. Nonconventional introns do not have the conserved borders characteristic for spliceosomal introns or the sequence complementary to U1 snRNA at the 5′ end. They form a stable secondary structure bringing together both exon/intron junctions, nevertheless, this conformation does not resemble the form of self-splicing or tRNA introns. In the genes studied so far, frequent nonconventional introns insertions at new positions have been observed, whereas conventional introns have been either found at the conserved positions, or simply lost. In this work, we examined the order of intron removal from Euglena gracilis transcripts of the tubA and gapC genes, which contain two types of introns: nonconventional and spliceosomal. The relative order of intron excision was compared for pairs of introns belonging to different types. Furthermore, intermediate products of splicing were analyzed using the PacBio Next Generation Sequencing system. The analysis led to the main conclusion that nonconventional introns are removed in a rapid way but later than spliceosomal introns. Moreover, the observed accumulation of transcripts with conventional introns removed and nonconventional present may suggest the existence of a time gap between the two types of splicing.


September 22, 2019  |  

Long-read sequencing and de novo assembly of a Chinese genome.

Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arrays and generate a de novo assembly of 2.93?Gb (contig N50: 8.3?Mb, scaffold N50: 22.0?Mb, including 39.3?Mb N-bases), together with 206?Mb of alternative haplotypes. The assembly fully or partially fills 274 (28.4%) N-gaps in the reference genome GRCh38. Comparison to GRCh38 reveals 12.8?Mb of HX1-specific sequences, including 4.1?Mb that are not present in previously reported Asian genomes. Furthermore, long-read sequencing of the transcriptome reveals novel spliced genes that are not annotated in GENCODE and are missed by short-read RNA-Seq. Our results imply that improved characterization of genome functional variation may require the use of a range of genomic technologies on diverse human populations.


September 22, 2019  |  

Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.


September 22, 2019  |  

Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon

A significant portion of genes in vertebrate genomes belongs to multigene families, with each family containing several gene copies whose presence/absence, as well as isoform structure, can be highly variable across individuals. Existing de novo techniques for assaying the sequences of such highly-similar gene families fall short of reconstructing end-to-end transcripts with nucleotide-level precision or assigning alternatively spliced transcripts to their respective gene copies. We present IsoCon, a high-precision method using long PacBio Iso-Seq reads to tackle this challenge. We apply IsoCon to nine Y chromosome ampliconic gene families and show that it outperforms existing methods on both experimental and simulated data. IsoCon has allowed us to detect an unprecedented number of novel isoforms and has opened the door for unraveling the structure of many multigene families and gaining a deeper understanding of genome evolution and human diseases.


September 22, 2019  |  

Construction of a draft reference transcripts of onion (Allium cepa) using long-read sequencing

To obtain intact and full-length RNA transcripts of onion (Allium cepa), long-read sequencing technology was first applied. Total RNAs extracted from four tissues; flowers, leaves, bulbs and roots, of red–purple and yellow-colored onions (A. cepa) were sequenced using long-read sequencing (RSII platform, P4-C2 chemistry). The 99,247 polished high-quality isoforms were produced by sequence correction processes of consensus calling, quality filtering, orientation verification, misread-nucleotide correction and dot-matrix view. The dot-matrix view was subsequently used to remove artificial inverted repeats (IRs), and resultantly 421 IRs were removed. The remaining 98,826 isoforms were condensed to 35,505 through the removal process of redundant isoforms. To assess the completeness of the 35,505 isoforms, the ratio of full-length isoforms, short-read mapping to the isoforms, and differentially expressed genes among the four tissues were analyzed along with the gene ontology across the tissues. As a result, the 35,505 isoforms were verified as a collection of isoforms with high completeness, and designated as draft reference transcripts (DRTs, ver 1.0) constructed by long-read sequencing.


September 22, 2019  |  

Long non-coding RNA identification: comparing machine learning based tools for long non-coding transcripts discrimination

Long noncoding RNA (lncRNA) is a kind of noncoding RNA with length more than 200 nucleotides, which aroused interest of people in recent years. Lots of studies have confirmed that human genome contains many thousands of lncRNAs which exert great influence over some critical regulators of cellular process. With the advent of high-throughput sequencing technologies, a great quantity of sequences is waiting for exploitation. Thus, many programs are developed to distinguish differences between coding and long noncoding transcripts. Different programs are generally designed to be utilised under different circumstances and it is sensible and practical to select an appropriate method according to a certain situation. In this review, several popular methods and their advantages, disadvantages, and application scopes are summarised to assist people in employing a suitable method and obtaining a more reliable result.


September 22, 2019  |  

Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing differential intron retention, and isoform ratio switching.

Abiotic stresses affect plant physiology, development, growth, and alter pre-mRNA splicing. Western poplar is a model woody tree and a potential bioenergy feedstock. To investigate the extent of stress-regulated alternative splicing (AS), we conducted an in-depth survey of leaf, root, and stem xylem transcriptomes under drought, salt, or temperature stress. Analysis of approximately one billion of genome-aligned RNA-Seq reads from tissue- or stress-specific libraries revealed over fifteen millions of novel splice junctions. Transcript models supported by both RNA-Seq and single molecule isoform sequencing (Iso-Seq) data revealed a broad array of novel stress- and/or tissue-specific isoforms. Analysis of Iso-Seq data also resulted in the discovery of 15,087 novel transcribed regions of which 164 show AS. Our findings demonstrate that abiotic stresses profoundly perturb transcript isoform profiles and trigger widespread intron retention (IR) events. Stress treatments often increased or decreased retention of specific introns – a phenomenon described here as differential intron retention (DIR). Many differentially retained introns were regulated in a stress- and/or tissue-specific manner. A subset of transcripts harboring super stress-responsive DIR events showed persisting fluctuations in the degree of IR across all treatments and tissue types. To investigate coordinated dynamics of intron-containing transcripts in the study we quantified absolute copy number of isoforms of two conserved transcription factors (TFs) using Droplet Digital PCR. This case study suggests that stress treatments can be associated with coordinated switches in relative ratios between fully spliced and intron-retaining isoforms and may play a role in adjusting transcriptome to abiotic stresses.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.