Menu
July 7, 2019  |  

Genome sequence of Salmonella bongori strain N268-08, a rare clinical isolate.

Salmonella bongori is a close relative of the highly virulent members of S. enterica subspecies enterica, encompassing more than 2,500 serovars, most of which cause human salmonellosis, one of the leading food-borne illnesses. S. bongori is only very rarely implicated in infections. We here present the sequence of a clinical isolate from Switzerland, S. bongori strain N268-08.


July 7, 2019  |  

Complete genome sequence of Staphylococcus aureus Z172, a vancomycin-intermediate and daptomycin-nonsusceptible methicillin-resistant strain isolated in Taiwan.

We report the complete genome sequence of Z172, a representative strain of sequence type 239-staphylococcal cassette chromosome mec type III (ST239-SCCmec type III) hospital-associated methicillin-resistant Staphylococcus aureus in Taiwan. Strain Z172 also exhibits a vancomycin-intermediate and daptomycin-nonsusceptible phenotype.


July 7, 2019  |  

A hybrid approach for the automated finishing of bacterial genomes.

Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.


July 7, 2019  |  

Complete genome sequence of Liberibacter crescens BT-1.

Liberibacter crescens BT-1, a Gram-negative, rod-shaped bacterial isolate, was previously recovered from mountain papaya to gain insight on Huanglongbing (HLB) and Zebra Chip (ZC) diseases. The genome of BT-1 was sequenced at the Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida. A finished assembly and annotation yielded one chromosome with a length of 1,504,659 bp and a G+C content of 35.4%. Comparison to other species in the Liberibacter genus, L. crescens has many more genes in thiamine and essential amino acid biosynthesis. This likely explains why L. crescens BT-1 is culturable while the known Liberibacter strains have not yet been cultured. Similar to Candidatus L. asiaticus psy62, the L. crescens BT-1 genome contains two prophage regions.


July 7, 2019  |  

Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants.

Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants.


July 7, 2019  |  

Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872.

The article provides an overview of the genomic features of Lactobacillus fermentum strain 3872. The genomic sequence reported here is one of three L. fermentum genome sequences completed to date. Comparative genomic analysis allowed the identification of genes that may be contributing to enhanced probiotic properties of this strain. In particular, the genes encoding putative mucus binding proteins, collagen-binding proteins, class III bacteriocin, as well as exopolysaccharide and prophage-related genes were identified. Genes related to bacterial aggregation and survival under harsh conditions in the gastrointestinal tract, along with the genes required for vitamin production were also found.


July 7, 2019  |  

Genome sequence of Escherichia coli E28, a multidrug-resistant strain isolated from a chicken carcass, and its spontaneously inducible prophage.

In this study, we sequenced the complete genome of the multidrug-resistant Escherichia coli strain E28, which was used as an indicator strain for phage therapy in vivo We used a combination of single-molecule real-time and Illumina sequencing technology to reveal the presence of a spontaneously inducible prophage. Copyright © 2017 Schmidt et al.


July 7, 2019  |  

The complete genome sequence of Exiguobacterium arabatum W-01 reveals potential probiotic functions.

Shrimp is extensively cultured worldwide. Shrimp farming is suffering from a variety of diseases. Probiotics are considered to be one of the effective methods to prevent and cure shrimp diseases. Exiguobacterium arabatum W-01, a gram-positive and orange-pigmented bacterium, was isolated from the intestine of a healthy Penaeus vannamei specimen. Whole-genome sequencing revealed a genome of 2,914,854 bp, with 48.02% GC content. In total, 3,083 open reading frames (ORFs) were identified, with an average length of 843.98 bp and a mean GC content of 48.11%, accounting for 89.27% of the genome. Among these ORFs, 2,884 (93.5%) genes were classified into Clusters of Orthologous Groups (COG) families comprising 21 functional categories, and 1,650 ORFs were classified into 83 functional Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 27 rRNA operons and 68 tRNAs were identified, with all 20 amino acids represented. In addition, 91 genomic islands, 68 potential prophages, and 33 tandem repeats, but no clustered regularly interspaced short palindromic repeats (CRISPRs), were found. No resistance genes and only one virulence gene were identified. Among the 150 secreted proteins of E. arabatum W-01, a variety of transport system substrate-binding proteins, enzymes, and biosynthetic proteins, which play important roles in the uptake and metabolism of nutrients, were found. Two adherence-related protein genes and 31 flagellum-related protein genes were also identified. Taken together, these results indicate potential probiotic functions for E. arabatum W-01.© 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


July 7, 2019  |  

Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria.

Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can contribute accessory genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion). Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and bacterial harm to eukaryotic hosts is linked using a natural tri-partite system with bacteria of the genus Vibrio, temperate vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a three-fold replicated, fully reciprocal 75 × 75 phage-bacteria infection matrix.According to their resistance to phages, bacteria could be grouped into three distinct categories: highly susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between pipefish infected with phage susceptible and phage resistant bacteria.These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than two levels when studying host-parasite evolution.


July 7, 2019  |  

Whole-genome comparative analysis of Salmonella enterica serovar Newport strains reveals lineage-specific divergence.

Salmonella enterica subsp. enterica serovar Newport has been associated with various foodborne outbreaks in humans and animals. Phylogenetically, serovar Newport is one of several Salmonella serovars that are polyphyletic. To understand more about the polyphyletic nature of this serovar, six food, environment, and human isolates from different Newport lineages were selected for genome comparison analyses. Whole genome comparisons demonstrated that heterogeneity mostly occurred in the prophage regions. Lineage-specific characteristics were also present in the Salmonella pathogenicity islands and fimbrial operons. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019  |  

Complete genome sequence of the nematicidal Bacillus thuringiensis MYBT18246.

Bacillus thuringiensis is a rod-shaped facultative anaerobic spore forming bacterium of the genus Bacillus . The defining feature of the species is the ability to produce parasporal crystal inclusion bodies, consisting of d-endotoxins, encoded by cry-genes. Here we present the complete annotated genome sequence of the nematicidal B. thuringiensis strain MYBT18246. The genome comprises one 5,867,749 bp chromosome and 11 plasmids which vary in size from 6330 bp to 150,790 bp. The chromosome contains 6092 protein-coding and 150 RNA genes, including 36 rRNA genes. The plasmids encode 997 proteins and 4 t-RNA’s. Analysis of the genome revealed a large number of mobile elements involved in genome plasticity including 11 plasmids and 16 chromosomal prophages. Three different nematicidal toxin genes were identified and classified according to the Cry toxin naming committee as cry13Aa2, cry13Ba1, and cry13Ab1. Strikingly, these genes are located on the chromosome in close proximity to three separate prophages. Moreover, four putative toxin genes of different toxin classes were identified on the plasmids p120510 (Vip-like toxin), p120416 (Cry-like toxin) and p109822 (two Bin-like toxins). A comparative genome analysis of B. thuringiensis MYBT18246 with three closely related B. thuringiensis strains enabled determination of the pan-genome of B. thuringiensis MYBT18246, revealing a large number of singletons, mostly represented by phage genes, morons and cryptic genes.


July 7, 2019  |  

Genomic comparison between Staphylococcus aureus GN strains clinically isolated from a familial infection case: IS1272 transposition through a novel inverted repeat-replacing mechanism.

A bacterial insertion sequence (IS) is a mobile DNA sequence carrying only the transposase gene (tnp) that acts as a mutator to disrupt genes, alter gene expressions, and cause genomic rearrangements. “Canonical” ISs have historically been characterized by their terminal inverted repeats (IRs), which may form a stem-loop structure, and duplications of a short (non-IR) target sequence at both ends, called target site duplications (TSDs). The IS distributions and virulence potentials of Staphylococcus aureus genomes in familial infection cases are unclear. Here, we determined the complete circular genome sequences of familial strains from a Panton-Valentine leukocidin (PVL)-positive ST50/agr4 S. aureus (GN) infection of a 4-year old boy with skin abscesses. The genomes of the patient strain (GN1) and parent strain (GN3) were rich for “canonical” IS1272 with terminal IRs, both having 13 commonly-existing copies (ce-IS1272). Moreover, GN1 had a newly-inserted IS1272 (ni-IS1272) on the PVL-converting prophage, while GN3 had two copies of ni-IS1272 within the DNA helicase gene and near rot. The GN3 genome also had a small deletion. The targets of ni-IS1272 transposition were IR structures, in contrast with previous “canonical” ISs. There were no TSDs. Based on a database search, the targets for ce-IS1272 were IRs or “non-IRs”. IS1272 included a larger structure with tandem duplications of the left (IRL) side sequence; tnp included minor cases of a long fusion form and truncated form. One ce-IS1272 was associated with the segments responsible for immune evasion and drug resistance. Regarding virulence, GN1 expressed cytolytic peptides (phenol-soluble modulin a and d-hemolysin) and PVL more strongly than some other familial strains. These results suggest that IS1272 transposes through an IR-replacing mechanism, with an irreversible process unlike that of “canonical” transpositions, resulting in genomic variations, and that, among the familial strains, the patient strain has strong virulence potential based on community-associated virulence factors.


July 7, 2019  |  

Genomic analysis of Bacillus licheniformis CBA7126 isolated from a human fecal sample.

Bacillus licheniformis is a Gram-positive, endospore-forming, saprophytic organism that occurs in plant and soil (Veith et al., 2004). A taxonomical approach shows that it is closely related to Bacillus subtilis (Lapidus et al., 2002; Xu and Côte, 2003; Rey et al., 2004). Generally, most bacilli are predominantly aerobic; however, B. licheniformis is a facultative anaerobe compared to other bacilli in ecological niches (Alexander, 1977). The commercial utility of the extracellular products of B. licheniformis makes this microorganism an economically interesting species (Kovács et al., 2009). For example, B. licheniformis is used industrially for manufacturing biochemicals, enzymes, antibiotics, and aminopeptidase. Several proteases such as a-amylase, penicillinase, pentosanase, cycloglucosyltransferase, ß-mannanase, and certain pectinolytic enzymes are synthesized industrially using B. licheniformis (Rodríguez-Absi and Prescott, 1978; Rey et al., 2004). The proteases are used in the detergent industry and the amylases are utilized for starch hydrolysis, desizing of textiles, and sizing of paper (Erickson, 1976). In addition, certain strains are utilized to produce peptide antibiotics, specialty chemicals, and poly-?-glutamic acid (Nierman and Maglott, 1989; Rey et al., 2004).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.