October 29, 2021  |  

Targeting Clinically Significant Dark Regions of the Human Genome with High-Accuracy, Long-Read Sequencing

There are many clinically important genes in “dark” regions of the human genome. These regions are characterized as dark due to a paucity of NGS coverage as a result of short-read sequencing or mapping difficulties. Low NGS sequencing yield can arise in these regions due to the presence of various repeat elements or biased base composition while inaccurate mapping can result from segmental duplications. Long-read sequencing coupled with an optimized, robust enrichment method has the potential to illuminate these dark regions. 


October 29, 2021  |  

Resolving Complex Pathogenic Alleles using HiFi Long-Range Amplicon Data and a New Clustering Algorithm

Many genetic diseases are mapped to structurally complex loci. These regions contain highly similar paralogous alleles (>99% identity) that span kilobases within the human genome. Comprehensive screening for pathogenic variants is incomplete and labor intensive using short-reads or optical mapping. In contrast, long-range amplification and PacBio HiFi sequencing fully and directly resolve and phase a wide range of pathogenic variants without inference. To capitalize on the accuracy of HiFi data we designed a new amplicon analysis tool, pbAA. pbAA can rapidly deconvolve a mixture of haplotypes, enabling precise diplotyping, and disease allele classification. 


September 7, 2021  |  

Full-Length Sequencing of CYP2D6 Locus with HiFi Reads Increasing Genotypes Accuracy 

The highly polymorphic CYP2D6 gene impacts the metabolism of 25% of the mostly prescribed drugs. Thus, accurate identification of variant CYP2D6 alleles in individuals is necessary for personalized medicine. PacBio HiFi sequencing produces long and accurate reads to identify variant regions. Here, we describe an end-to-end workflow for the characterization of full-length CYP2D6 by HiFi sequencing. 


September 7, 2021  |  

Targeting Clinically Significant Dark Regions of the Human Genome with High-Accuracy, Long-Read Sequencing

There are many clinically important genes in “dark” regions of the human genome. These regions are characterized as dark due to a paucity of NGS coverage as a result of short-read sequencing or mapping difficulties. Low NGS sequencing yield can arise in these regions due to the presence of various repeat elements or biased base composition while inaccurate mapping can result from segmental duplications. Long-read sequencing coupled with an optimized, robust enrichment method has the potential to illuminate these dark regions. 


September 7, 2021  |  

Resolving Complex Pathogenic Alleles using HiFi Long-Range Amplicon Data and a New Clustering Algorithm

Many genetic diseases are mapped to structurally complex loci. These regions contain highly similar paralogous alleles (>99% identity) that span kilobases within the human genome. Comprehensive screening for pathogenic variants is incomplete and labor intensive using short-reads or optical mapping. In contrast, long-range amplification and PacBio HiFi sequencing fully and directly resolve and phase a wide range of pathogenic variants without inference. To capitalize on the accuracy of HiFi data we designed a new amplicon analysis tool, pbAA. pbAA can rapidly deconvolve a mixture of haplotypes, enabling precise diplotyping, and disease allele classification. 


August 19, 2021  |  

Infographic: SMRT Sequencing – How it works

PacBio Systems are powered by Single Molecule, Real-Time (SMRT) Sequencing, a technology proven to produce exceptionally long reads with high accuracy. SMRT Sequencing allows you to accelerate your science with the complete range of PacBio applications to produce data you can trust.


June 1, 2021  |  

Mitochondrial DNA sequencing using PacBio SMRT technology

Mitochondrial DNA (mtDNA) is a compact, double-stranded circular genome of 16,569 bp with a cytosine-rich light (L) chain and a guanine-rich heavy (H) chain. mtDNA mutations have been increasingly recognized as important contributors to an array of human diseases such as Parkinson’s disease, Alzheimer’s disease, colorectal cancer and Kearns–Sayre syndrome. mtDNA mutations can affect all of the 1000-10,000 copies of the mitochondrial genome present in a cell (homoplasmic mutation) or only a subset of copies (heteroplasmic mutation). The ratio of normal to mutant mtDNAs within cells is a significant factor in whether mutations will result in disease, as well as the clinical presentation, penetrance, and severity of the phenotype. Over time, heteroplasmic mutations can become homoplastic due to differential replication and random assortment. Full characterization of the mitochondrial genome would involve detection of not only homoplastic but heteroplasmic mutations, as well as complete phasing. Previously, we sequenced human mtDNA on the PacBio RS II System with two partially overlapping amplicons. Here, we present amplification-free, full-length sequencing of linearized mtDNA using the Sequel System. Full-length sequencing allows variant phasing along the entire mitochondrial genome, identification of heteroplasmic variants, and detection of epigenetic modifications that are lost in amplicon-based methods.


June 1, 2021  |  

Multiplexed complete microbial genomes on the Sequel System

Microbes play an important role in nearly every part of our world, as they affect human health, our environment, agriculture, and aid in waste management. Complete closed genome sequences, which have become the gold standard with PacBio long-read sequencing, can be key to understanding microbial functional characteristics. However, input requirements, consumables costs, and the labor required to prepare and sequence a microbial genome have in the past put PacBio sequencing out of reach for some larger projects. We have developed a multiplexed library prep approach that is simple, fast, and cost-effective, and can produce 4 to 16 closed bacterial genomes from one Sequel SMRT Cell. Additionally, we are introducing a streamlined analysis pipeline for processing multiplexed genome sequence data through de novo HGAP assembly, making the entire process easy for lab personnel to perform. Here we present the entire workflow from shearing through assembly, with times for each step. We show HGAP assembly results with single or very few contigs from bacteria from different size genomes, sequenced without or with size selection. These data illustrate the benefits and potential of the PacBio multiplexed library prep and the Sequel System for sequencing large numbers of microbial genomes.


June 1, 2021  |  

High-quality de novo genome assembly and intra-individual mitochondrial instability in the critically endangered kakapo

The kakapo (Strigops habroptila) is a large, flightless parrot endemic to New Zealand. It is highly endangered with only ~150 individuals remaining, and intensive conservation efforts are underway to save this iconic species from extinction. These include genetic studies to understand critical genes relevant to fertility, adaptation and disease resistance, and genetic diversity across the remaining population for future breeding program decisions. To aid with these efforts, we have generated a high-quality de novo genome assembly using PacBio long-read sequencing. Using the new diploid-aware FALCON-Unzip assembler, the resulting genome of 1.06 Gb has a contig N50 of 5.6 Mb (largest contig 29.3 Mb), >350-times more contiguous compared to a recent short-read assembly of a closely related parrot (kea) species. We highlight the benefits of the higher contiguity and greater completeness of the kakapo genome assembly through examples of fully resolved genes important in wildlife conservation (contrasted with fragmented and incomplete gene resolution in short-read assemblies), in some cases even providing sequence for regions orthologous to gaps of missing sequence in the chicken reference genome. We also highlight the complete resolution of the kakapo mitochondrial genome, fully containing the mitochondrial control region which is missing from the previous dedicated kakapomitochondrial genome NCBI entry. For this region, we observed a marked heterogeneity in the number of tandem repeats in different mtDNAmolecules from a single bird tissue, highlighting the enhanced molecular resolution uniquely afforded by long-read, single-molecule PacBio sequencing.


June 1, 2021  |  

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. In contrast, Single Molecule, Real-Time (SMRT) Sequencing directly sequences full-length transcripts without the need for assembly and imputation. Here we apply the Iso-Seq method (long-read RNA sequencing) to detect full-length isoforms and the new IsoPhase algorithm to retrieve allele-specific isoform information for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata).


June 1, 2021  |  

Amplification-free targeted enrichment and SMRT Sequencing of repeat-expansion genomic regions

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease.


June 1, 2021  |  

SMRT-Cappable-seq reveals the complex operome of bacteria

SMRT-Cappable-seq combines the isolation of full-length prokaryotic primary transcripts with long read sequencing technology. It is the first experimental methodology to sequence entire prokaryotic transcripts. It identifies the transcription start site and termination site, thereby directly defines the operon structures genome-wide in prokaryotes. Applied to E.coli, SMRT-Cappable-seq identifies a total of ~2300 operons, among which ~900 are novel. Importantly, our result reveals a pervasive read-through of previous experimentally validated transcription termination sites. Termination read-through represents a powerful strategy to control gene expression. Taken together this data provides a first glance at the complexity of the ‘operome’ in bacteria and presents an invaluable resource for understanding gene regulation and function in bacteria.


June 1, 2021  |  

Scalability and reliability improvements to the Iso-Seq analysis pipeline enables higher throughput sequencing of full-length cancer transcripts

The characterization of gene expression profiles via transcriptome sequencing has proven to be an important tool for characterizing how genomic rearrangements in cancer affect the biological pathways involved in cancer progression and treatment response. More recently, better resolution of transcript isoforms has shown that this additional level of information may be useful in stratifying patients into cancer subtypes with different outcomes and responses to treatment.1 The Iso-Seq protocol developed at PacBio is uniquely able to deliver full-length, high-quality cDNA sequences, allowing the unambiguous determination of splice variants, identifying potential biomarkers and yielding new insights into gene fusion events. Recent improvements to the Iso-Seq bioinformatics pipeline increases the speed and scalability of data analysis while boosting the reliability of isoform detection and cross-platform usability. Here we report evaluation of Sequel Iso-Seq runs of human UHRR samples with spiked-in synthetic RNA controls and show that the new pipeline is more CPU efficient and recovers more human and synthetic isoforms while reducing the number of false positives. We also share the results of sequencing the well-characterized HCC-1954 breast cancer and normal breast cell lines, which will be made publicly available. Combined with the recent simplification of the Iso-Seq sample preparation2, the new analysis pipeline completes a streamlined workflow for revealing the most comprehensive picture of transcriptomes at the throughput needed to characterize cancer samples.


June 1, 2021  |  

Allelic specificity of immunoglobulin heavy chain ([email protected]) translocation in B-cell acute lymphoblastic leukemia (B-ALL) unveiled by long-read sequencing

Oncogenic fusion of IGH-DUX4 has recently been reported as a hallmark that defines a B-ALL subtype present in up to 7% of adolescents and young adults B-ALL. The translocation of DUX4 into IGH results in aberrant activation of DUX4 by hijacking the intronic IGH enhancer (Eµ). How IGH-DUX4 translocation interplays with IGH allelic exclusion was never been explored. We investigated this in Nalm6 B-ALL cell line, using long-read (PacBio Iso-Seq method and 10X Chromium WGS), short-read (Illumina total stranded RNA and WGS), epigenome (H3K27ac ChIP-seq, ATAC-seq) and 3-D genome (Hi-C, H3K27ac HiChIP, Capture-C).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.