April 21, 2020  |  

Investigating the role of exudates in recruiting Streptomyces bacteria to the Arabidopsis thaliana root microbiome

Arabidopsis thaliana has a diverse but consistent root microbiome, recruited in part by the release of fixed carbon in root exudates. Here we focussed on the recruitment of Streptomyces bacteria, which are well established plant-growth-promoting rhizobacteria and which have been proposed to be recruited to A. thaliana roots by the release of salicylic acid. We generated high quality genome sequences for eight Streptomyces endophyte strains and showed that although some strains do enhance plant growth, they are not attracted to, and do not feed on, salicyclic acid. We used 13CO2 DNA-stable isotope probing to determine which bacteria are fed by the plants in the rhizo- and endosphere and found that streptomycetes did not feed on root exudates in vivo, despite the fact that they can use exudate as sole carbon and nitrogen sources in vitro. We confirmed increased root colonisation by streptomycetes in plants that constitutively produce salicylic acid, but these plants exhibited a pleiotropic phenotype of early senescence and weak growth. We propose that streptomycetes are attracted to the rhizosphere by root exudates but can be outcompeted for this food source by more abundant proteobacteria and most likely feed off unlabelled complex organic matter.


April 21, 2020  |  

Whole-Genome Sequences of Four Indian Isolates of Azospirillum brasilense.

Azospirillum brasilense is used worldwide as a plant growth-promoting inoculant for agricultural crops. To understand how the genomes of Indian strains of A. brasilense compare with their South American counterparts, we determined the whole-genome sequences of four strains of A. brasilense isolated from the rhizosphere of grasses from India.Copyright © 2019 Singh et al.


April 21, 2020  |  

Complete Genome Sequence of Achromobacter spanius UQ283, a Soilborne Isolate Exhibiting Plant Growth-Promoting Properties.

Achromobacter spanius UQ283 is a soilborne bacterium found to exhibit plant growth-promoting and disease-suppressing attributes in several plant species. Accordingly, we used long-read sequencing to determine its complete genome sequence. The assembled genome will aid in understanding the multifaceted interactions between plant growth-promoting rhizobacteria, pathogens, and plants. Copyright © 2019 Wass et al.


April 21, 2020  |  

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains.

Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.


April 21, 2020  |  

Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2.

Peanut suffer from a number of fungal and bacterial pathogens, while plant endophytes were considered excellent candidates as biocontrol agents. In this study, the peanut endophytic bacterium LDO2 was evaluated for the potential of peanut pathogens inhibition and growth-promotion, and the genetic mechanisms were explored by genome mining. Strain LDO2 significantly inhibited the growth of peanut pathogenic fungi and pathogenic bacteria, and specifically, it showed pronounced inhibition on mycelia growth of Aspergillus flavus mycelia and caused mycelial deformity. Gene clusters responsible for antifungal metabolites (fengycin, surfactin, bacilysin) and antibacterial metabolites (butirosin, bacillaene, difficidin, macrolactin, surfactin, bacilysin) were identified. Strain LDO2 also exhibited several growth-promoting related features including phosphate solubilization, siderophore production and growth promotion of peanut root. Genes associated with plant growth promotion were also identified and analyzed, as well as genes related to secreted proteins. These findings suggested that this peanut endophyte could be a potential biocontrol agent in peanut production and a source of antimicrobial compounds for further exploitation. Copyright © 2018 Elsevier GmbH. All rights reserved.


April 21, 2020  |  

Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid.

Phaseolus dumosus is an endemic species from mountain tops in Mexico that was found in traditional agriculture areas in Veracruz, Mexico. P. dumosus plants were identified by ITS sequences and their nodules were collected from agricultural fields or from trap plant experiments in the laboratory. Bacteria from P. dumosus nodules were identified as belonging to the phaseoli-etli-leguminosarum (PEL) or to the tropici group by 16S rRNA gene sequences. We obtained complete closed genomes from two P. dumosus isolates CCGE531 and CCGE532 that were phylogenetically placed within the tropici group but with a distinctive phylogenomic position and low average nucleotide identity (ANI). CCGE531 and CCGE532 had common phenotypic characteristics with tropici type B rhizobial symbionts. Genome synteny analysis and ANI showed that P. dumosus isolates had different chromids and our analysis suggests that chromids have independently evolved in different lineages of the Rhizobium genus. Finally, we considered that P. dumosus and Phaseolus vulgaris plants belong to the same cross-inoculation group since they have conserved symbiotic affinites for rhizobia.Copyright © 2018 Elsevier GmbH. All rights reserved.


April 21, 2020  |  

Genomic Characterization of a Newly Isolated Rhizobacteria Sphingomonas panacis Reveals Plant Growth Promoting Effect to Rice

This article reports the full genome sequence of Sphingomonas panacis DCY99T (=KCTC 42347T =JCM30806T), which is a Gram-negative rod-shaped, non-spore forming, motile bacterium isolated from rusty ginseng root in South Korea. A draft genome of S. panacis DCY99T and a single circular plasmid were generated using the PacBio platform. Antagonistic activity experiment showed S. panacis DCY99T has the plant growth promoting effect. Thus, the genome sequence of S. panacis DCY99T may contribute to biotechnological application of the genus Sphingomonas in agriculture.


April 21, 2020  |  

Complete genome sequence of Caulobacter flavus RHGG3T, a type species of the genus Caulobacter with plant growth-promoting traits and heavy metal resistance.

Caulobacter flavus RHGG3T, a novel type species in the genus Caulobacter, originally isolated from rhizosphere soil of watermelon (Citrullus lanatus), has the ability to improve the growth of watermelon seedling and tolerate heavy metals. In vitro, C. flavus RHGG3T was able to solubilize phosphate (80.56 mg L-1), produce indole-3-acetic acid (IAA) (11.58 mg L-1) and was resistant to multiple heavy metals (copper, zinc, cadmium, cobalt and lead). Inoculating watermelon with this strain increased shoot and root length by 22.1% and 43.7%, respectively, and the total number of lateral roots by 55.9% compared to non-inoculated watermelon. In this study, we present the complete genome sequence of C. flavus RHGG3T, which was comprised of a single circular chromosome of 5,659,202 bp with a G?+?C content of 69.25%. An annotation analysis revealed that the C. flavus RHGG3T genome contained 5172 coding DNA sequences, 9 rRNA and 55 tRNA genes. Genes related to plant growth promotion (PGP), such as those associated with phosphate solubilization, nitrogen fixation, IAA, phenazine, volatile compounds, spermidine and cobalamin synthesis, were found in the C. flavus RHGG3T genome. Some genes responsible for heavy metal tolerance were also identified. The genome sequence of strain RHGG3T reported here provides new insight into the molecular mechanisms underlying the promotion of plant growth and the resistance to heavy metals in C. flavus. This study will be valuable for further exploration of the biotechnological applications of strain RHGG3T in agriculture.


September 22, 2019  |  

Complete genome sequence of Paenibacillus polymyxa YC0136, a plant growth–promoting rhizobacterium isolated from tobacco rhizosphere.

Paenibacillus polymyxa strain YC0136 is a plant growth-promoting rhizobacterium with antimicrobial activity, which was isolated from tobacco rhizosphere. Here, we report the complete genome sequence of P. polymyxa YC0136. Several genes with antifungal and antibacterial activity were discovered. Copyright © 2017 Liu et al.


September 22, 2019  |  

Identification of putative coffee rust mycoparasites using single molecule DNA sequencing of infected pustules.

The interaction of crop pests with their natural enemies is a fundament to their control. Natural enemies of fungal pathogens of crops are poorly known relative to those of insect pests despite the diversity of fungal pathogens and their economic importance. Currently, many regions across Latin America are experiencing unprecedented epidemics of coffee rust (Hemileia vastatrix). Identification of natural enemies of coffee rust could aid in developing management strategies or in pinpointing species that could be used for biocontrol. Here we characterize fungal communities associated with coffee rust lesions by single molecule DNA sequencing of fungal ribosomal RNA barcodes from leaf discs (˜28 mm(2)) containing rust lesions and control discs with no rust lesions. The leaf disc communities were hyper-diverse in fungi, with up to 57 taxa per control disc, and the diversity was only slightly reduced in rust-infected discs. However, geography had a greater influence on the fungal community than whether the disk was infected by coffee rust. Through comparisons between control and rust-infected leaf discs, as well as taxonomic criteria, we identified 15 putative mycoparasitic fungi. These fungi are concentrated in fungal family Cordycipitaceae and order Tremellales. These data emphasize the complexity of fungal diversity of unknown ecological function within a leaf that might influence plant disease epidemics or lead to the development of species for biocontrol of fungal disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.