Menu
July 7, 2019  |  

An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing.

The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp. To improve this result, we generated approximately 12-fold coverage in long reads using the Single Molecule Real Time sequencing technology developed at Pacific Biosciences. We assembled the long and short reads together using the MaSuRCA mega-reads assembly algorithm, which produced a substantially better assembly, P. taeda version 2.0. The new assembly has an N50 contig size of 25?361, more than three times as large as achieved in the original assembly, and an N50 scaffold size of 107?821, 61% larger than the previous assembly. © The Author 2017. Published by Oxford University Press.


July 7, 2019  |  

Sequencing and de novo assembly of a near complete indica rice genome.

A high-quality reference genome is critical for understanding genome structure, genetic variation and evolution of an organism. Here we report the de novo assembly of an indica rice genome Shuhui498 (R498) through the integration of single-molecule sequencing and mapping data, genetic map and fosmid sequence tags. The 390.3?Mb assembly is estimated to cover more than 99% of the R498 genome and is more continuous than the current reference genomes of japonica rice Nipponbare (MSU7) and Arabidopsis thaliana (TAIR10). We annotate high-quality protein-coding genes in R498 and identify genetic variations between R498 and Nipponbare and presence/absence variations by comparing them to 17 draft genomes in cultivated rice and its closest wild relatives. Our results demonstrate how to de novo assemble a highly contiguous and near-complete plant genome through an integrative strategy. The R498 genome will serve as a reference for the discovery of genes and structural variations in rice.


July 7, 2019  |  

Genome sequencing supports a multi-vertex model for Brassiceae species.

The economically important Brassica genus is a good system for studying the evolution of polyploids. Brassica genomes have undergone whole genome triplication (WGT). Subgenome dominance phenomena such as biased gene fractionation and dominant gene expression were observed in tripled genomes of Brassica. The genome of radish (Raphanus sativus), another important crop of tribe Brassiceae, was derived from the same WGT event and shows similar subgenome dominance. These findings and molecular dating indicate that radish occupies a similar evolutionary origin as that of Brassica species. Here, we extended the Brassica “triangle of U” to a multi-vertex model. This model describes the relationships or the potential of using more Brassiceae mesohexaploids in the creation of new allotetraploid oil or vegetable crop species. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms.

Tung tree (Vernicia fordii) is an economically important tree widely cultivated for industrial oil production in China. To better understand the molecular basis of tung tree chloroplasts, we sequenced and characterized its genome using PacBio RS II sequencing platforms. The chloroplast genome was sequenced with 161,528?bp in length, composed with one pair of inverted repeats (IRs) of 26,819?bp, which were separated by one small single copy (SSC; 18,758?bp) and one large single copy (LSC; 89,132?bp). The genome contains 114 genes, coding for 81 protein, four ribosomal RNAs and 29 transfer RNAs. An expansion with integration of an additional rps19 gene in the IR regions was identified. Compared to the chloroplast genome of Jatropha curcas, a species from the same family, the tung tree chloroplast genome is distinct with 85 single nucleotide polymorphisms (SNPs) and 82 indels. Phylogenetic analysis suggests that V. fordii is a sister species with J. curcas within the Eurosids I. The nucleotide sequence provides vital molecular information for understanding the biology of this important oil tree.


July 7, 2019  |  

Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch.

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


July 7, 2019  |  

High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development.

Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.


July 7, 2019  |  

Genome sequencing: Illuminating the sunflower genome.

A high-quality sunflower genome provides insight into Asterid genome evolution. Moreover, integrative analyses based on quantitative genetics, expression and diversity data uncover the gene networks and candidate genes for oil metabolism and flowering time, two important agronomic traits for sunflowers.


July 7, 2019  |  

Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus.

The plants in the Erigeron genus of the Compositae (Asteraceae) family are commonly called fleabanes, possibly due to the belief that certain chemicals in these plants repel fleas. In the traditional Chinese medicine, Erigeron breviscapus , which is native to China, was widely used in the treatment of cerebrovascular disease. A handful of bioactive compounds, including scutellarin, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid, have been isolated from the plant. With the purpose of finding novel medicinal compounds and understanding their biosynthetic pathways, we propose to sequence the genome of E. breviscapus . We assembled the highly heterozygous E. breviscapus genome using a combination of PacBio single-molecular real-time sequencing and next-generation sequencing methods on the Illumina HiSeq platform. The final draft genome is approximately 1.2 Gb, with contig and scaffold N50 sizes of 18.8 kb and 31.5 kb, respectively. Further analyses predicted 37 504 protein-coding genes in the E. breviscapus genome and 8172 shared gene families among Compositae species. The E. breviscapus genome provides a valuable resource for the investigation of novel bioactive compounds in this Chinese herb.


July 7, 2019  |  

Maize defective kernel mutant generated by insertion of a Ds element in a gene encoding a highly conserved TTI2 cochaperone.

We have used the newly engineered transposable element Dsg to tag a gene that gives rise to a defective kernel (dek) phenotype. Dsg requires the autonomous element Ac for transposition. Upon excision, it leaves a short DNA footprint that can create in-frame and frameshift insertions in coding sequences. Therefore, we could create alleles of the tagged gene that confirmed causation of the dek phenotype by the Dsg insertion. The mutation, designated dek38-Dsg, is embryonic lethal, has a defective basal endosperm transfer (BETL) layer, and results in a smaller seed with highly underdeveloped endosperm. The maize dek38 gene encodes a TTI2 (Tel2-interacting protein 2) molecular cochaperone. In yeast and mammals, TTI2 associates with two other cochaperones, TEL2 (Telomere maintenance 2) and TTI1 (Tel2-interacting protein 1), to form the triple T complex that regulates DNA damage response. Therefore, we cloned the maize Tel2 and Tti1 homologs and showed that TEL2 can interact with both TTI1 and TTI2 in yeast two-hybrid assays. The three proteins regulate the cellular levels of phosphatidylinositol 3-kinase-related kinases (PIKKs) and localize to the cytoplasm and the nucleus, consistent with known subcellular locations of PIKKs. dek38-Dsg displays reduced pollen transmission, indicating TTI2’s importance in male reproductive cell development.


July 7, 2019  |  

Complete plastid genomes of the genus Ammopiptanthus and identification of a novel 23-kb rearrangement

Ammopiptanthus is an endangered angiosperm genus with evergreen and broad leaves, grown in the semi-desert regions of eastern Central Asia. We decoded the complete plastid genomes of Ammopiptanthus mongolicus (AM) and Ammopiptanthus nanus (AN), the only two species in the genus Ammopiptanthus. The total length of AM plastome is 153,935 bp, comprising a 83,889-bp long single-copy region (LSC), a 18,022-bp short single-copy region (SSC) and two inverted repeat (IR) regions of 26,012 bp. The total length of AN plastome is 154,140 bp, including a LSC of 84,069 bp, a SSC of 17,971 bp and two IR regions of 26,000 bp, respectively. Each Ammopiptanthus plastome contains 116 unique functional genes, including 78 protein-coding genes, 4 rRNA and 34 tRNA genes. Plastome sequence alignment with other Papilionoid legumes and an outgroup revealed a novel 23-kb inversion between the ndhJ and petN loci in Ammopiptanthus plastomes.


July 7, 2019  |  

MYB transcription factor gene involved in sex determination in Asparagus officinalis.

Dioecy is a plant mating system in which individuals of a species are either male or female. Although many flowering plants evolved independently from hermaphroditism to dioecy, the molecular mechanism underlying this transition remains largely unknown. Sex determination in the dioecious plant Asparagus officinalis is controlled by X and Y chromosomes; the male and female karyotypes are XY and XX, respectively. Transcriptome analysis of A. officinalis buds showed that a MYB-like gene, Male Specific Expression 1 (MSE1), is specifically expressed in males. MSE1 exhibits tight linkage with the Y chromosome, specific expression in early anther development and loss of function on the X chromosome. Knockout of the MSE1 orthologue in Arabidopsis induces male sterility. Thus, MSE1 acts in sex determination in A. officinalis.© 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.


July 7, 2019  |  

Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica.

Polyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual-a bona fide speciation event. The extent to which this happens is not known. Here, we consider the origin of Arabidopsis suecica, a selfing allopolyploid between Arabidopsis thaliana and Arabidopsis arenosa, which has hitherto been considered to be an example of a unique origin. Based on whole-genome re-sequencing of 15 natural A. suecica accessions, we identify ubiquitous shared polymorphism with the parental species, and hence conclusively reject a unique origin in favor of multiple founding individuals. We further estimate that the species originated after the last glacial maximum in Eastern Europe or central Eurasia (rather than Sweden, as the name might suggest). Finally, annotation of the self-incompatibility loci in A. suecica revealed that both loci carry non-functional alleles. The locus inherited from the selfing A. thaliana is fixed for an ancestral non-functional allele, whereas the locus inherited from the outcrossing A. arenosa is fixed for a novel loss-of-function allele. Furthermore, the allele inherited from A. thaliana is predicted to transcriptionally silence the allele inherited from A. arenosa, suggesting that loss of self-incompatibility may have been instantaneous.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

A novel inversion in the chloroplast genome of marama (Tylosema esculentum).

Tylosema esculentum (marama bean) is being developed as a possible crop for resource-poor farmers in arid regions of Southern Africa. As part of the molecular characterization of this species, the chloroplast genome has been assembled from next-generation sequencing using both Illumina and Pac-Bio data. The genome is of typical organization with a large single-copy region and a small single-copy region separated by a pair of inverted repeats and covers 161537 bp. It contains a unique inversion not present in any other legumes, even in the closest relatives for which the complete chloroplast genome is available, and two complete copies of the ycf1 gene. These data extend the range of variability of legume chloroplast genomes. The sequencing of multiple individuals has identified two different chloroplast genomes which were geographically separated. The current sampling is limited so that the extent of the intraspecific variation is still to be determined, leaving open the question of legume chloroplast genomes adapted to particular arid environments.© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.


July 7, 2019  |  

Whole-genome restriction mapping by “subhaploid”-based RAD sequencing: An efficient and flexible approach for physical mapping and genome scaffolding.

Assembly of complex genomes using short reads remains a major challenge, which usually yields highly fragmented assemblies. Generation of ultradense linkage maps is promising for anchoring such assemblies, but traditional linkage mapping methods are hindered by the infrequency and unevenness of meiotic recombination that limit attainable map resolution. Here we develop a sequencing-based “in vitro” linkage mapping approach (called RadMap), where chromosome breakage and segregation are realized by generating hundreds of “subhaploid” fosmid/bacterial-artificial-chromosome clone pools, and by restriction site-associated DNA sequencing of these clone pools to produce an ultradense whole-genome restriction map to facilitate genome scaffolding. A bootstrap-based minimum spanning tree algorithm is developed for grouping and ordering of genome-wide markers and is implemented in a user-friendly, integrated software package (AMMO). We perform extensive analyses to validate the power and accuracy of our approach in the model plant Arabidopsis thaliana and human. We also demonstrate the utility of RadMap for enhancing the contiguity of a variety of whole-genome shotgun assemblies generated using either short Illumina reads (300 bp) or long PacBio reads (6-14 kb), with up to 15-fold improvement of N50 (~816 kb-3.7 Mb) and high scaffolding accuracy (98.1-98.5%). RadMap outperforms BioNano and Hi-C when input assembly is highly fragmented (contig N50 = 54 kb). RadMap can capture wide-range contiguity information and provide an efficient and flexible tool for high-resolution physical mapping and scaffolding of highly fragmented assemblies. Copyright © 2017 Dou et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.