X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing.

Single-molecule real-time (SMRT) DNA sequencing allows the systematic detection of chemical modifications such as methylation but has not previously been applied on a genome-wide scale. We used this approach to detect 49,311 putative 6-methyladenine (m6A) residues and 1,407 putative 5-methylcytosine (m5C) residues in the genome of a pathogenic Escherichia coli strain. We obtained strand-specific information for methylation sites and a quantitative assessment of the frequency of methylation at each modified position. We deduced the sequence motifs recognized by the methyltransferase enzymes present in this strain without prior knowledge of their specificity. Furthermore, we found that deletion of a phage-encoded methyltransferase-endonuclease…

Read More »

Friday, July 19, 2019

The complete genome sequence of Escherichia coli EC958: a high quality reference sequence for the globally disseminated multidrug resistant E. coli O25b:H4-ST131 clone.

Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific…

Read More »

Friday, July 19, 2019

Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence.

Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then…

Read More »

Friday, July 19, 2019

Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT Sequencing and associated methylome analysis.

Bifidobacterium animalis subsp. lactis CNCM I-2494 is a component of a commercialized fermented dairy product for which beneficial effects on health has been studied by clinical and preclinical trials. To date little is known about the molecular mechanisms that could explain the beneficial effects that bifidobacteria impart to the host. Restriction-modification (R-M) systems have been identified as key obstacles in the genetic accessibility of bifidobacteria, and circumventing these is a prerequisite to attaining a fundamental understanding of bifidobacterial attributes, including the genes that are responsible for health-promoting properties of this clinically and industrially important group of bacteria. The complete genome…

Read More »

Friday, July 19, 2019

Comparative genomic analysis and virulence differences in closely related Salmonella enterica serotype Heidelberg isolates from humans, retail meats, and animals.

Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. Recently, an antibiotic-resistant strain of this serovar was implicated in a large 2011 multistate outbreak resulting from consumption of contaminated ground turkey that involved 136 confirmed cases, with one death. In this study, we assessed the evolutionary diversity of 44 S. Heidelberg isolates using whole-genome sequencing (WGS) generated by the 454 GS FLX (Roche) platform. The isolates, including 30 with nearly indistinguishable (one band difference) Xbal pulsed-field gel electrophoresis patterns (JF6X01.0032, JF6X01.0058), were collected from various sources between 1982 and 2011 and included…

Read More »

Friday, July 19, 2019

Unlocking the mystery of the hard-to-sequence phage genome: PaP1 methylome and bacterial immunity.

Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome.After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51?N-6-methyladenines and 152?N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites…

Read More »

Friday, July 19, 2019

BREX is a novel phage resistance system widespread in microbial genomes.

The perpetual arms race between bacteria and phage has resulted in the evolution of efficient resistance systems that protect bacteria from phage infection. Such systems, which include the CRISPR-Cas and restriction-modification systems, have proven to be invaluable in the biotechnology and dairy industries. Here, we report on a six-gene cassette in Bacillus cereus which, when integrated into the Bacillus subtilis genome, confers resistance to a broad range of phages, including both virulent and temperate ones. This cassette includes a putative Lon-like protease, an alkaline phosphatase domain protein, a putative RNA-binding protein, a DNA methylase, an ATPase-domain protein, and a protein…

Read More »

Friday, July 19, 2019

Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus.

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors.Sequencing using single-molecule real-time technology resulted in the assembly of a single continuous chromosomal sequence, which was error-corrected, annotated and compared to nine draft genome assemblies of ST772-MRSA-V…

Read More »

Friday, July 19, 2019

Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance.

The Bacillus thuringiensis d-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (dissociation constant Kd?=?11-41?nM), kill TnCAD-expressing insect cells that are not…

Read More »

Friday, July 19, 2019

Host genome integration and giant virus-induced reactivation of the virophage mavirus.

Endogenous viral elements are increasingly found in eukaryotic genomes, yet little is known about their origins, dynamics, or function. Here we provide a compelling example of a DNA virus that readily integrates into a eukaryotic genome where it acts as an inducible antiviral defence system. We found that the virophage mavirus, a parasite of the giant Cafeteria roenbergensis virus (CroV), integrates at multiple sites within the nuclear genome of the marine protozoan Cafeteria roenbergensis. The endogenous mavirus is structurally and genetically similar to eukaryotic DNA transposons and endogenous viruses of the Maverick/Polinton family. Provirophage genes are not constitutively expressed, but…

Read More »

Sunday, July 7, 2019

Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds.

Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas…

Read More »

Sunday, July 7, 2019

Draft genome sequence of Erwinia tracheiphila, an economically important bacterial pathogen of cucurbits.

Erwinia tracheiphila is one of the most economically important pathogens of cucumbers, melons, squashes, pumpkins, and gourds in the northeastern and midwestern United States, yet its molecular pathology remains uninvestigated. Here, we report the first draft genome sequence of an E. tracheiphila strain isolated from an infected wild gourd (Cucurbita pepo subsp. texana) plant. The genome assembly consists of 7 contigs and includes a putative plasmid and at least 20 phage and prophage elements. Copyright © 2015 Shapiro et al.

Read More »

Sunday, July 7, 2019

Paenibacillus larvae-directed bacteriophage HB10c2 and its application in American Foulbrood-affected honey bee larvae.

Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives