Menu
June 1, 2021  |  

Structural variant combining Illumina and low-coverage PacBio

Structural variant calling combining Illumina and low-coverage Pacbio Detection of large genomic variation (structural variants) has proven challenging using short-read methods. Long-read approaches which can span these large events have promise to dramatically expand the ability to accurately call structural variants. Although sequencing with Pacific Biosciences (Pacbio) long-read technology has become increasingly high throughput, generating high coverage with the technology can still be limiting and investigators often would like to know what pacbio coverages are adequate to call structural variants. Here, we present a method to identify a substantially higher fraction of structural variants in the human genome using low-coverage pacbio data by multiple strategies for ensembling data types and algorithms. Algorithmically, we combine three structural variant callers: PBHoney by Adam English, Sniffles by Fritz Sedlazeck, and Parliament by Adam English (which we have modified to improve for speed). Parliament itself uses a combination of Pacbio and Illumina data with a number of short-read callers (Breakdancer, Pindel, Crest, CNVnator, Delly, and Lumpy). We show that the outputs of these three programs are largely complementary to each other, with each able to uniquely access different sets of structural variants at different coverages. Combining them together can more than double the recall of true structural variants from a truth set relative to sequencing with Illumina alone, with substantial improvements even at low pacbio coverages (3x – 7x). This allows us to present for the first time cost-benefit tradeoffs to investigators about how much pacbio sequencing will yield what improvements in SV-calling. This work also builds upon the foundational work of Genome in a Bottle led by Justin Zook in establishing a truth set for structural variants in the Ashkenazim-Jewish trio data recently released. This work demonstrates the power of this benchmark set – one of the first of its kind for structural variation data – to help understand and refine the accuracies of calling structural variants with a number of approaches.


April 21, 2020  |  

Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2.

DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to ~1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes. Copyright © 2019 Elsevier Inc. All rights reserved.


September 22, 2019  |  

A high-resolution genetic map of the cereal crown rot pathogen Fusarium pseudograminearum provides a near-complete genome assembly.

Fusarium pseudograminearum is an important pathogen of wheat and barley, particularly in semi-arid environments. Previous genome assemblies for this organism were based entirely on short read data and are highly fragmented. In this work, a genetic map of F. pseudograminearum has been constructed for the first time based on a mapping population of 178 individuals. The genetic map, together with long read scaffolding of a short read-based genome assembly, was used to give a near-complete assembly of the four F. pseudograminearum chromosomes. Large regions of synteny between F. pseudograminearum and F. graminearum, the related pathogen that is the primary causal agent of cereal head blight disease, were previously proposed in the core conserved genome, but the construction of a genetic map to order and orient contigs is critical to the validation of synteny and the placing of species-specific regions. Indeed, our comparative analyses of the genomes of these two related pathogens suggest that rearrangements in the F. pseudograminearum genome have occurred in the chromosome ends. One of these rearrangements includes the transposition of an entire gene cluster involved in the detoxification of the benzoxazolinone (BOA) class of plant phytoalexins. This work provides an important genomic and genetic resource for F. pseudograminearum, which is less well characterized than F. graminearum. In addition, this study provides new insights into a better understanding of the sexual reproduction process in F. pseudograminearum, which informs us of the potential of this pathogen to evolve.© 2016 BSPP AND JOHN WILEY & SONS LTD.


September 21, 2019  |  

Long-read genome sequencing identifies causal structural variation in a Mendelian disease.

PurposeCurrent clinical genomics assays primarily utilize short-read sequencing (SRS), but SRS has limited ability to evaluate repetitive regions and structural variants. Long-read sequencing (LRS) has complementary strengths, and we aimed to determine whether LRS could offer a means to identify overlooked genetic variation in patients undiagnosed by SRS.MethodsWe performed low-coverage genome LRS to identify structural variants in a patient who presented with multiple neoplasia and cardiac myxomata, in whom the results of targeted clinical testing and genome SRS were negative.ResultsThis LRS approach yielded 6,971 deletions and 6,821 insertions?>?50?bp. Filtering for variants that are absent in an unrelated control and overlap a disease gene coding exon identified three deletions and three insertions. One of these, a heterozygous 2,184?bp deletion, overlaps the first coding exon of PRKAR1A, which is implicated in autosomal dominant Carney complex. RNA sequencing demonstrated decreased PRKAR1A expression. The deletion was classified as pathogenic based on guidelines for interpretation of sequence variants.ConclusionThis first successful application of genome LRS to identify a pathogenic variant in a patient suggests that LRS has significant potential for the identification of disease-causing structural variation. Larger studies will ultimately be required to evaluate the potential clinical utility of LRS.


July 7, 2019  |  

No evidence for maintenance of a sympatric Heliconius species barrier by chromosomal inversions.

Mechanisms that suppress recombination are known to help maintain species barriers by preventing the breakup of coadapted gene combinations. The sympatric butterfly species Heliconius melpomene and Heliconius cydno are separated by many strong barriers, but the species still hybridize infrequently in the wild, and around 40% of the genome is influenced by introgression. We tested the hypothesis that genetic barriers between the species are maintained by inversions or other mechanisms that reduce between-species recombination rate. We constructed fine-scale recombination maps for Panamanian populations of both species and their hybrids to directly measure recombination rate within and between species, and generated long sequence reads to detect inversions. We find no evidence for a systematic reduction in recombination rates in F1 hybrids, and also no evidence for inversions longer than 50 kb that might be involved in generating or maintaining species barriers. This suggests that mechanisms leading to global or local reduction in recombination do not play a significant role in the maintenance of species barriers between H. melpomene and H. cydno.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.