X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
January 1, 2019

Genomic sequence and copy number evolution during hybrid crop development in sunflowers.

Hybrid crops, an important part of modern agriculture, rely on the development of male and female heterotic gene pools. In sunflowers, heterotic gene pools were developed through the use of crop-wild relatives to produce cytoplasmic male sterile female and branching, fertility restoring male lines. Here, we use genomic data from a diversity panel of male, female, and open-pollinated lines to explore the genetic changes brought during modern improvement. We find the male lines have diverged most from their open-pollinated progenitors and that genetic differentiation is concentrated in chromosomes, 8, 10 and 13, due to introgressions from wild relatives. Ancestral variation…

Read More »

January 1, 2019

The Anaplasma ovis genome reveals a high proportion of pseudogenes.

The genus Anaplasma is made up of organisms characterized by small genomes that are undergoing reductive evolution. Anaplasma ovis, one of the seven recognized species in this genus, is an understudied pathogen of sheep and other ruminants. This tick-borne agent is thought to induce only mild clinical disease; however, small deficits may add to larger economic impacts due to the wide geographic distribution of this pathogen.In this report we present the first complete genome sequence for A. ovis and compare the genome features with other closely related species. The 1,214,674?bp A. ovis genome encodes 933 protein coding sequences, the split…

Read More »

December 1, 2018

Full-Length Envelope Analyzer (FLEA): A tool for longitudinal analysis of viral amplicons.

Next generation sequencing of viral populations has advanced our understanding of viral population dynamics, the development of drug resistance, and escape from host immune responses. Many applications require complete gene sequences, which can be impossible to reconstruct from short reads. HIV env, the protein of interest for HIV vaccine studies, is exceptionally challenging for long-read sequencing and analysis due to its length, high substitution rate, and extensive indel variation. While long-read sequencing is attractive in this setting, the analysis of such data is not well handled by existing methods. To address this, we introduce FLEA (Full-Length Envelope Analyzer), which performs…

Read More »

October 1, 2018

Dynamics of coral-associated microbiomes during a thermal bleaching event.

Coral-associated microorganisms play an important role in their host fitness and survival. A number of studies have demonstrated connections between thermal tolerance in corals and the type/relative abundance of Symbiodinium they harbor. More recently, the shifts in coral-associated bacterial profiles were also shown to be linked to the patterns of coral heat tolerance. Here, we investigated the dynamics of Porites lutea-associated bacterial and algal communities throughout a natural bleaching event, using full-length 16S rRNA and internal transcribed spacer sequences (ITS) obtained from PacBio circular consensus sequencing. We provided evidence of significant changes in the structure and diversity of coral-associated microbiomes…

Read More »

October 1, 2018

A comparison of genotypic and phenotypic methods for analyzing the susceptibility to sulfamethoxazole and trimethoprim in Edwardsiella piscicida.

In a study of 39 isolates of Edwardsiella piscicida made from Korean aquaculture sites, sul genes were detected in 16 isolates and dfr genes in 19. Ten isolates were shown to contain both sul and dfr genes. MIC and disc diffusion zones assays were performed to measure the phenotypic susceptibilities of the 39 isolates. Normalized resistance interpretation was applied to these data to categorize isolates as either fully susceptible or as manifesting reduced susceptibility. The standard CLSI protocols specify the use of a mixture of sulfamethoxazole/trimethoprim (20:1) in both MIC and disc diffusion tests. Using the CLSI MIC protocol, 100%…

Read More »

September 1, 2018

Microbial sequence typing in the genomic era.

Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To…

Read More »

September 1, 2018

Genomics of Corynebacterium striatum, an emerging multidrug-resistant pathogen of immunocompromised patients.

Corynebacterium striatum is an emerging multidrug-resistant (MDR) pathogen of immunocompromised and chronically ill patients. The objective of these studies was to provide a detailed genomic analysis of disease-causing C. striatum and determine the genomic drivers of resistance and resistance-gene transmission.A multi-institutional and prospective pathogen genomics programme flagged seven MDR C. striatum infections occurring close in time, and specifically in immunocompromised patients with underlying respiratory diseases. Whole genome sequencing was used to identify clonal relationships among strains, genetic causes of antimicrobial resistance, and their mobilization capacity. Matrix-assisted linear desorption/ionization-time-of-flight analyses of sequenced isolates provided curated content to improve rapid clinical identification in subsequent…

Read More »

August 1, 2018

Whole-genome resequencing and pan-transcriptome reconstruction highlight the impact of genomic structural Variation on secondary metabolite gene clusters in the grapevine Esca pathogen Phaeoacremonium minimum.

The Ascomycete fungus Phaeoacremonium minimum is one of the primary causal agents of Esca, a widespread and damaging grapevine trunk disease. Variation in virulence among Pm. minimum isolates has been reported, but the underlying genetic basis of the phenotypic variability remains unknown. The goal of this study was to characterize intraspecific genetic diversity and explore its potential impact on virulence functions associated with secondary metabolism, cellular transport, and cell wall decomposition. We generated a chromosome-scale genome assembly, using single molecule real-time sequencing, and resequenced the genomes and transcriptomes of multiple isolates to identify sequence and structural polymorphisms. Numerous insertion and…

Read More »

July 1, 2018

Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases.

Contents Summary 45 I. Introduction 45 II. Targeted chromosome-based cloning via long-range assembly (TACCA) 46 III. Resistance gene cloning through mutational mapping (MutMap) 47 IV. Cloning through mutant chromosome sequencing (MutChromSeq) 47 V. Rapid cloning through resistance gene enrichment and sequencing (RenSeq) 49 VI. Cloning resistance genes through transcriptome profiling (RNAseq) 49 VII. Resistance gene deployment strategies 49 VIII. Conclusions 50 Acknowledgements 50 References 50 SUMMARY: Genetically encoded resistance is a major component of crop disease management. Historically, gene loci conferring resistance to pathogens have been identified through classical genetic methods. In recent years, accelerated gene cloning strategies have become…

Read More »

July 1, 2018

Avian transcriptomics: opportunities and challenges

Recent developments in next-generation sequencing technologies have greatly facilitated the study of whole transcriptomes in model and non-model species. Studying the transcriptome and how it changes across a variety of biological conditions has had major implications for our understanding of how the genome is regulated in different contexts, and how to interpret adaptations and the phenotype of an organism. The aim of this review is to highlight the potential of these new technologies for the study of avian transcriptomics, and to summarise how transcriptomics has been applied in ornithology. A total of 81 peer-reviewed scientific articles that used transcriptomics to…

Read More »

July 1, 2018

Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium).

Genome-wide analyses of the effector- and toxin-encoding genes were used to examine the phylogenetics and evolution of pathogenicity amongst diverse strains of Pseudomonas syringae causing bacterial canker of cherry (Prunus avium), including pathovars P. syringae pv morsprunorum (Psm) races 1 and 2, P. syringae pv syringae (Pss) and P. syringae pv avii. Phylogenetic analyses revealed Psm races and P. syringae pv avii clades were distinct and were each monophyletic, whereas cherry-pathogenic strains of Pss were interspersed amongst strains from other host species. A maximum likelihood approach was used to predict effectors associated with pathogenicity on cherry. Pss possesses a smaller repertoire of type III…

Read More »

July 1, 2018

Assessment of an organ-specific de novo transcriptome of the nematode trap-crop, Solanum sisymbriifolium

Solanum sisymbriifolium, also known as "Litchi Tomato" or "Sticky Nightshade," is an undomesticated and poorly researched plant related to potato and tomato. Unlike the latter species, S. sisymbriifolium induces eggs of the cyst nematode, Globodera pallida, to hatch and migrate into its roots, but then arrests further nematode maturation. In order to provide researchers with a partial blueprint of its genetic make-up so that the mechanism of this response might be identified, we used single molecule real time (SMRT) sequencing to compile a high quality de novo transcriptome of 41,189 unigenes drawn from individually sequenced bud, root, stem, and leaf…

Read More »

July 1, 2018

Comparative genomics of Spiraeoideae-infecting Erwinia amylovora strains provides novel insight to genetic diversity and identifies the genetic basis of a low-virulence strain.

Erwinia amylovora is the causal agent of fire blight, one of the most devastating diseases of apple and pear. Erwinia amylovora is thought to have originated in North America and has now spread to at least 50 countries worldwide. An understanding of the diversity of the pathogen population and the transmission to different geographical regions is important for the future mitigation of this disease. In this research, we performed an expanded comparative genomic study of the Spiraeoideae-infecting (SI) E. amylovora population in North America and Europe. We discovered that, although still highly homogeneous, the genetic diversity of 30 E. amylovora genomes examined…

Read More »

July 1, 2018

Bacterial diversity and community structure in Chongqing radish paocai brines revealed using PacBio single-molecule real-time sequencing technology.

Traditional Chongqing radish paocai fermented with aged brine is considered to have the most intense flavor and authentic taste. Eight 'Yanzhi' (red, RRPB group) and 'Chunbulao' (white, WRPB) radish paocai brine samples were collected from Chongqing peasant households, and the diversity and community structures of bacteria present in these brines were determined using PacBio single-molecule real-time sequencing of their full-length 16S rRNA genes.In total, 30 phyla, 218 genera, and 306 species were identified from the RRPB group, with 20 phyla, 261 genera, and 420 species present in the WRPB group. Obvious differences in bacterial profiles between the RRPB and WRPB…

Read More »

1 2 3 41

Subscribe for blog updates:

Archives