Menu
July 7, 2019  |  

Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2 reduction capacity.

Rhodobacter sphaeroides consists of two chromosomes and many plasmids and incorporates many environmentally important functional gene. Rhodobacter sphaeroides MBTLJ-8 was derived from R. sphaeroides 2.4.1 using chemical mutagenesis and is characterized by enhanced production of physiological active compounds as well as improved carbon dioxide reduction capacity. We reported the complete genome sequence and characteristics based on genomic information of this bacteria. Therefore, this genome sequence provides elucidation for improved CO2 fixation and enhanced physiological active compounds production, and will be used as the efficient photosynthetic bacteria for the biological CO2 reduction system. Copyright © 2018 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Draft genome sequence of the xanthocidin-producing strain Streptomyces sp. AcE210, isolated from a root nodule of Alnus glutinosa (L.).

Streptomyces sp. strain AcE210 exhibited antibacterial activity toward Gram-positive microorganisms and turned out to be a rare producer of the special- ized metabolite xanthocidin. The 10.6-Mb draft genome sequence gives insight into the complete specialized metabolite production capacity and builds the basis to find and locate the biosynthetic gene cluster of xanthocidin.


July 7, 2019  |  

Genome analysis of Rhodococcus Sp. DSSKP-R-001: A highly effective ß-estradiol-degrading bacterium.

We screened bacteria that use E2 as its sole source of carbon and energy for growth and identified them as Rhodococcus, and we named them DSSKP-R-001. For a better understanding of the metabolic potential of the strain, whole genome sequencing of Rhodococcus DSSKP-R-001 and annotation of the functional genes were performed. The genomic sketches included a predicted protein-coding gene of approximately 5.4?Mbp with G?+?C content of 68.72% and 5180. The genome of Rhodococcus strain DSSKP-R-001 consists of three replicons: one chromosome and two plasmids of 5.2, 0.09, and 0.09, respectively. The results showed that there were ten steroid-degrading enzymes distributed in the whole genome of the strain. The existence and expression of estradiol-degrading enzymes were verified by PCR and RTPCR. Finally, comparative genomics was used to compare multiple strains of Rhodococcus. It was found that Rhodococcus DSSKP-R-001 had the highest similarity to Rhodococcus sp. P14 and there were 2070 core genes shared with Rhodococcus sp. P14, Rhodococcus jostii RHA1, Rhodococcus opacus B4, and Rhodococcus equi 103S, showing evolutionary homology. In summary, this study provides a comprehensive understanding of the role of Rhodococcus DSSKP-R-001 in estradiol-efficient degradation of these assays for Rhodococcus. DSSKP-R-001 in bioremediation and evolution within Rhodococcus has important meaning.


July 7, 2019  |  

Complete genome sequence of the endophytic bacterium Chryseobacterium indologenes PgBE177, isolated from Panax quinquefolius.

Chryseobacterium indologenes PgBE177, isolated from the root tissue of a 4-year-old Panax quinquefolius plant, showed antagonistic activity against Pseu- domonas syringae pv. tomato DC3000, a bacterial pathogen. Here, we report the whole-genome sequence of C. indologenes PgBE177. The bacterium contains bacteri- ocin gene clusters and has the potential to stimulate plant growth.


July 7, 2019  |  

Picky comprehensively detects high-resolution structural variants in nanopore long reads.

Acquired genomic structural variants (SVs) are major hallmarks of cancer genomes, but they are challenging to reconstruct from short-read sequencing data. Here we exploited the long reads of the nanopore platform using our customized pipeline, Picky ( https://github.com/TheJacksonLaboratory/Picky ), to reveal SVs of diverse architecture in a breast cancer model. We identified the full spectrum of SVs with superior specificity and sensitivity relative to short-read analyses, and uncovered repetitive DNA as the major source of variation. Examination of genome-wide breakpoints at nucleotide resolution uncovered micro-insertions as the common structural features associated with SVs. Breakpoint density across the genome is associated with the propensity for interchromosomal connectivity and was found to be enriched in promoters and transcribed regions of the genome. Furthermore, we observed an over-representation of reciprocal translocations from chromosomal double-crossovers through phased SVs. We demonstrate that Picky analysis is an effective tool for comprehensive detection of SVs in cancer genomes from long-read data.


July 7, 2019  |  

Genome analysis of Vallitalea guaymasensis strain L81 isolated from a deep-sea hydrothermal vent system.

Abyssivirga alkaniphila strain L81T, recently isolated from a black smoker biofilm at the Loki’s Castle hydrothermal vent field, was previously described as a mesophilic, obligately anaerobic heterotroph able to ferment carbohydrates, peptides, and aliphatic hydrocarbons. The strain was classified as a new genus within the family Lachnospiraceae. Herein, its genome is analyzed and A. alkaniphila is reassigned to the genus Vallitalea as a new strain of V. guaymasensis, designated V. guaymasensis strain L81. The 6.4 Mbp genome contained 5651 protein encoding genes, whereof 4043 were given a functional prediction. Pathways for fermentation of mono-saccharides, di-saccharides, peptides, and amino acids were identified whereas a complete pathway for the fermentation of n-alkanes was not found. Growth on carbohydrates and proteinous compounds supported methane production in co-cultures with Methanoplanus limicola. Multiple confurcating hydrogen-producing hydrogenases, a putative bifurcating electron-transferring flavoprotein—butyryl-CoA dehydrogenase complex, and a Rnf-complex form a basis for the observed hydrogen-production and a putative reverse electron-transport in V. guaymasensis strain L81. Combined with the observation that n-alkanes did not support growth in co-cultures with M. limicola, it seemed more plausible that the previously observed degradation patterns of crude-oil in strain L81 are explained by unspecific activation and may represent a detoxification mechanism, representing an interesting ecological function. Genes encoding a capacity for polyketide synthesis, prophages, and resistance to antibiotics shows interactions with the co-occurring microorganisms. This study enlightens the function of the fermentative microorganisms from hydrothermal vents systems and adds valuable information on the bioprospecting potential emerging in deep-sea hydrothermal systems.


July 7, 2019  |  

Complete genome sequence of the Arcobacter molluscorum type strain LMG 25693.

As components of freshwater and marine microflora, Arcobacter spp. are often recovered from shellfish, such as mussels, clams, and oysters. Arcobacter mol- luscorum was isolated from mussels from the Ebro Delta in Catalonia, Spain. This ar- ticle describes the whole-genome sequence of the A. molluscorum strain LMG 25693T(= F98-3T= CECT 7696T).


July 7, 2019  |  

Genome analysis of Mycobacterium avium subspecies hominissuis strain 109.

Infection with Mycobacterium avium is a significant cause of morbidity and its treatment requires the use of multiple antibiotics for more than 12 months. In the current work, we provide the genome sequence, gene annotations, gene ontology annotations, and protein homology data for M. avium strain 109 (MAC109), which has been used extensively in preclinical studies. The de novo assembled genome consists of a circular chromosome of length 5,188,883?bp and two circular plasmids of sizes 147,100?bp and 16,516?bp. We have named the plasmids pMAC109a and pMAC109b, respectively. Based on its genome, we confirm that MAC109 should be classified as Mycobacterium avium subsp. hominissuis. Using genome annotation software, we identified 4,841 coding sequences and annotated these with Gene Ontology (GO) terms. Additionally, we wrote software to generate a database of homologous proteins among MAC109 and eight other commonly used mycobacterial laboratory strains. The resulting database may be useful for translating genetic data between various strains of mycobacteria, and the software may be applied readily to other organisms.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.