X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Genomic Islands in the Full-Genome Sequence of an NAD-Hemin-Independent Avibacterium paragallinarum Strain Isolated from Peru.

Here, we report the full-genome sequence of an NAD-hemin-independent Avibacterium paragallinarum serovar C-2 strain, FARPER-174, isolated from layer hens in Peru. This genome contained 12 potential genomic islands that include ribosomal protein-coding genes, a nadR gene, hemocin-coding genes, sequences of fagos, an rtx operon, and drug resistance genes. Copyright © 2019 Tataje-Lavanda et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from deep-sea sediment

Pseudoalteromonas strains are widely distributed in the marine environment and most have attracted considerable interest owing to their ability to synthesize biologically active metabolites. In this study, we report and describe the genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from the deep-sea sediment of Pacific Ocean at a depth of 2000?m. The complete genome consisted of three contigs with a total genome size of 4,167,407?bp and a GC content of 40.76?l%, and was predicted to contain 4194 protein-coding genes and 131 non-coding RNA genes. The strain MEBiC 03485 genome was also shown to contain genes for diverse metabolic pathways.…

Read More »

Sunday, July 7, 2019

Comparative genomic analysis of Lactobacillus plantarum GB-LP4 and identification of evolutionarily divergent genes in high-osmolarity environment.

Lactobacillus plantarum is one of the widely-used probiotics and there have been a large number of advanced researches on the effectiveness of this species. However, the difference between previously reported plantarum strains, and the source of genomic variation among the strains were not clearly specified. In order to understand further on the molecular basis of L. plantarum on Korean traditional fermentation, we isolated the L. plantarum GB-LP4 from Korean fermented vegetable and conducted whole genome assembly. With comparative genomics approach, we identified the candidate genes that are expected to have undergone evolutionary acceleration. These genes have been reported to associate…

Read More »

Sunday, July 7, 2019

Salmonella enterica serovar Enteritidis strains recovered from human clinical cases between 1949 and 1995 in the United States.

Salmonella enterica serovar Enteritidis is one of the most commonly isolated foodborne pathogens and is transmitted primarily to humans through consumption of contaminated poultry and poultry products. We are reporting completely closed genome and plasmid sequences of historical S. Enteritidis isolates recovered from humans between 1949 and 1995 in the United States.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Lactococcus lactis subsp. lactis G50 with immunostimulating activity, isolated from Napier grass.

Lactococcus lactis subsp. lactis G50 is a strain with immunostimulating activity, isolated from Napier grass (Pennisetum purpureum). We determined the complete genome sequence of this strain using the PacBio RS II platform. The single circular chromosome consists of 2,346,663?bp, with 35.03% G+C content and no plasmids. Copyright © 2018 Nakano et al.

Read More »

Sunday, July 7, 2019

High-quality complete genome sequences of three bovine Shiga toxin-producing Escherichia coli O177:H- (fliCH25) isolates harboring virulent stx2 and multiple plasmids.

Shiga toxin-producingEscherichia coli(STEC) bacteria are zoonotic pathogens. We report here the high-quality complete genome sequences of three STEC O177:H- (fliCH25) strains, SMN152SH1, SMN013SH2, and SMN197SH3. The assembled genomes consisted of one optical map-verified circular chromosome for each strain, plus two plasmids for SMN013SH2 and three plasmids for SMN152SH1 and SMN197SH3, respectively. Copyright © 2018 Sheng et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Pseudomonas sp. strain NC02, isolated from soil.

We report here the complete genome sequence of Pseudomonas sp. strain NC02, isolated from soil in eastern Massachusetts. We assembled PacBio reads into a single closed contig with 132× mean coverage and then polished this contig using Illumina MiSeq reads, yielding a 6,890,566-bp sequence with 61.1% GC content. Copyright © 2018 Cerra et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Escherichia coli ML35.

We report here the complete genome sequence of Escherichia coli strain ML35. We assembled PacBio reads into a single closed contig with 169× mean coverage and then polished this contig using Illumina MiSeq reads, yielding a 4,918,774-bp sequence with 50.8% GC content. Copyright © 2018 Casale et al.

Read More »

Sunday, July 7, 2019

Ten steps to get started in Genome Assembly and Annotation.

As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted…

Read More »

1 61 62 63 64 65 67

Subscribe for blog updates:

Archives