Menu
July 7, 2019  |  

Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain SRDI565.

Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod. SRDI565 was isolated from a nodule recovered from the roots of the annual clover Trifolium subterraneum subsp. subterraneum grown in the greenhouse and inoculated with soil collected from New South Wales, Australia. SRDI565 has a broad host range for nodulation within the clover genus, however N2-fixation is sub-optimal with some Trifolium species and ineffective with others. Here we describe the features of R. leguminosarum bv. trifolii strain SRDI565, together with genome sequence information and annotation. The 6,905,599 bp high-quality-draft genome is arranged into 7 scaffolds of 7 contigs, contains 6,750 protein-coding genes and 86 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.


July 7, 2019  |  

Complete genome sequence of Bradyrhizobium japonicum J5, isolated from a soybean nodule in Hokkaido, Japan.

Soybean bradyrhizobia form root nodules on soybean plants and symbiotically fix N2 Strain J5 is phylogenetically far from well-known representatives within the Bradyrhizobium japonicum linage. The complete genome showed the largest single chromosomal (10.1 Mb) and symbiosis island (998 kb) among complete genomes of soybean bradyrhizobia. Copyright © 2017 Kanehara and Minamisawa.


July 7, 2019  |  

Complete genome sequence of Kosakonia oryzae type strain Ola 51(T).

Strain Ola 51(T) (=LMG 24251(T)?=?CGMCC 1.7012(T)) is the type strain of the species Kosakonia oryzae and was isolated from surface-sterilized roots of the wild rice species Oryza latifolia grown in Guangdong, China. Here we summarize the features of the strain Ola 51(T) and describe its complete genome sequence. The genome contains one circular chromosome of 5,303,342 nucleotides with 54.01% GC content, 4773 protein-coding genes, 16 rRNA genes, 76 tRNA genes, 13 ncRNA genes, 48 pseudo genes, and 1 CRISPR array.


July 7, 2019  |  

Genomic and phenotypic analyses of Pseudomonas psychrotolerans PRS08-11306 reveal a turnerbactin biosynthesis gene cluster that contributes to nitrogen fixation.

Plant-microbe interactions can provide agronomic benefits, such as enhancing nutrient uptake and providing fixed nitrogen. The Pseudomonas psychrotolerans strain PRS08-11306 was isolated from rice seeds and can enhance plant growth. Here, we analyzed the P. psychrotolerans genome, which is ~5Mb, with 4389 coding sequences, 77 tRNAs, and 7 rRNAs. Genome analysis identified a cluster of turnerbactin biosynthetic genes, which are responsible for the production of a catecholate siderophore and contribute to nitrogen fixation for the host. Analysis of the transcription factor mutant ?rpoS, which does not express this gene cluster, confirmed the relationship between the gene cluster and siderophore production. The nitrogen fixation characteristics of the cluster were confirmed in a plant growth-promoting experiment. The annotated full genome sequence of this strain sheds light on the role of P. psychrotolerans PRS08-11306 as a plant beneficial bacterium. Copyright © 2017. Published by Elsevier B.V.


July 7, 2019  |  

Draft genome sequence of Acidihalobacter ferrooxidans DSM 14175 (strain V8), a new iron- and sulfur-oxidizing, halotolerant, acidophilic species.

The use of halotolerant acidophiles for bioleaching provides a biotechnical approach for the extraction of metals from regions where high salinity exists in the ores and source water. Here, we describe the first draft genome of a new species of a halotolerant and iron- and sulfur-oxidizing acidophile, Acidihalobacter ferrooxidans DSM 14175 (strain V8). Copyright © 2017 Khaleque et al.


July 7, 2019  |  

Complete genome sequence of the drought resistance-promoting endophyte Klebsiella sp. LTGPAF-6F.

Bacterial endophytes with capacity to promote plant growth and improve plant tolerance against biotic and abiotic stresses have importance in agricultural practice and phytoremediation. A plant growth-promoting endophyte named Klebsiella sp. LTGPAF-6F, which was isolated from the roots of the desert plant Alhagi sparsifolia in north-west China, exhibits the ability to enhance the growth of wheat under drought stress. The complete genome sequence of this strain consists of one circular chromosome and two circular plasmids. From the genome, we identified genes related to the plant growth promotion and stress tolerance, such as nitrogen fixation, production of indole-3-acetic acid, acetoin, 2,3-butanediol, spermidine and trehalose. This genome sequence provides a basis for understanding the beneficial interactions between LTGPAF-6F and host plants, and will facilitate its applications as biotechnological agents in agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Sulfuriferula sp. strain AH1, a sulfur-oxidizing autotroph isolated from weathered mine tailings from the Duluth Complex in Minnesota.

We report the closed and annotated genome sequence of Sulfuriferula sp. strain AH1. Strain AH1 has a 2,877,007-bp chromosome that includes a partial Sox system for inorganic sulfur oxidation and a complete nitrogen fixation pathway. It also has a single 39,138-bp plasmid with genes for arsenic and mercury resistance. Copyright © 2017 Jones et al.


July 7, 2019  |  

Complete genome sequence of Bradyrhizobium sp. ORS285, a photosynthetic strain able to establish Nod factor-dependent or Nod factor-independent symbiosis with Aeschynomene legumes.

Here, we report the complete genome sequence of Bradyrhizobium sp. strain ORS285, which is able to nodulate Aeschynomene legumes using two distinct strategies that differ in the requirement of Nod factors. The genome sequence information of this strain will help understanding of the different mechanisms of interaction of rhizobia with legumes. Copyright © 2017 Gully et al.


July 7, 2019  |  

Complete genome sequence of Mesorhizobium ciceri bv. biserrulae WSM1497, an efficient nitrogen-fixing microsymbiont of the forage legume Biserrula pelecinus.

We report here the complete genome sequence of Mesorhizobium ciceri bv. biserrulae strain WSM1497, the efficient nitrogen-fixing microsymbiont and commercial inoculant in Australia of the forage legume Biserrula pelecinus The genome consists of 7.2 Mb distributed across a single chromosome (6.67 Mb) and a single plasmid (0.53 Mb). Copyright © 2017 Brewer et al.


July 7, 2019  |  

Complete genome sequence of endophyte Bacillus flexus KLBMP 4941 reveals its plant growth promotion mechanism and genetic basis for salt tolerance.

Bacillus flexus KLBMP 4941 is a halotolerant endophyte isolated from the halophyte Limonium sinense. This strain can improve host seedling growth under salt stress conditions. We here report the complete genome information of endophyte KLBMP 4941. It has a circular chromosome and two plasmids for a total genome 4,104,242 bp in size with a G+C content of 38.09%. Genes related to plant growth promotion (PGP), such as those associated with nitrogen fixation, siderophore, spermidine, and acetoin synthesis were found in the KLBMP 4941 genome. Some genes responsible for high salinity tolerance, like genes associated with the Na(+)/H(+) antiporter, glycine betaine transporter, and betaine-aldehyde dehydrogenase were also found in the KLBMP 4941 genome. The genome analysis will provide better understanding of the mechanisms underlying the promotion of plant growth in strain KLBMP 4941 under salt stress conditions and its ability to adapt to coastal salt marsh habitats, and provide a basis for its further biotechnological applications in agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Mesorhizobium sophorae ICMP 19535T, a highly specific, nitrogen-fixing symbiont of New Zealand endemic Sophora spp.

We report here the complete genome sequence of Mesorhizobium sophorae ICMP 19535(T) This strain was isolated from Sophora microphylla root nodules and can nodulate and fix nitrogen with this host and also with Sophora prostrata, Sophora longicarinata, and Clianthus puniceus The genome consists of 8.05 Mb. Copyright © 2017 De Meyer et al.


July 7, 2019  |  

Complete genome sequence of a novel nonnodulating rhizobium species isolated from Agave americana L. rhizosphere.

We report here the complete genome sequence of Rhizobium sp. strain ACO-34A, isolated from Agave americana L. rhizosphere. No common nod genes were found, but there were nif genes for nitrogen fixing. A low average nucleotide identity to reported species supports its designation as a novel Rhizobium species that has a complete ribosomal operon in a plasmid. Copyright © 2017 Ruíz-Valdiviezo et al.


July 7, 2019  |  

The complete genome sequence of Ensifer meliloti strain CCMM B554 (FSM-MA), a highly effective nitrogen-fixing microsymbiont of Medicago truncatula Gaertn.

Strain CCMM B554, also known as FSM-MA, is a soil dwelling and nodule forming, nitrogen-fixing bacterium isolated from the nodules of the legume Medicago arborea L. in the Maamora Forest, Morocco. The strain forms effective nitrogen fixing nodules on species of the Medicago, Melilotus and Trigonella genera and is exceptional because it is a highly effective symbiotic partner of the two most widely used accessions, A17 and R108, of the model legume Medicago truncatula Gaertn. Based on 16S rRNA gene sequence, multilocus sequence and average nucleotide identity analyses, FSM-MA is identified as a new Ensifer meliloti strain. The genome is 6,70 Mbp and is comprised of the chromosome (3,64 Mbp) harboring 3574 predicted genes and two megaplasmids, pSymA (1,42 Mbp) and pSymB (1,64 Mbp) with respectively 1481 and 1595 predicted genes. The average GC content of the genome is 61.93%. The FSM-MA genome structure is highly similar and co-linear to other E. meliloti strains in the chromosome and the pSymB megaplasmid while, in contrast, it shows high variability in the pSymA plasmid. The large number of strain-specific sequences in pSymA as well as strain-specific genes on pSymB involved in the biosynthesis of the lipopolysaccharide and capsular polysaccharide surface polysaccharides may encode novel symbiotic functions explaining the high symbiotic performance of FSM-MA.


July 7, 2019  |  

Draft genome of Paraburkholderia caballeronis TNe-841T, a free-living, nitrogen-fixing, tomato plant-associated bacterium.

10.1601/nm.26956 caballeronis is a plant-associated bacterium. Strain TNe-841T was isolated from the rhizosphere of tomato (Solanum lycopersicum L. var. lycopersicum) growing in Nepantla Mexico State. Initially this bacterium was found to effectively nodulate Phaseolus vulgaris L. However, from an analysis of the genome of strain TNe-841T and from repeat inoculation experiments, we found that this strain did not nodulate bean and also lacked nodulation genes, suggesting that the genes were lost. The genome consists of 7,115,141 bp with a G?+?C content of 67.01%. The sequence includes 6251 protein-coding genes and 87 RNA genes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.