July 19, 2019  |  

Comparative genomics of two sequential Candida glabrata clinical isolates.

Candida glabrata is an important fungal pathogen which develops rapid antifungal resistance in treated patients. It is known that azole treatments lead to antifungal resistance in this fungal species and that multidrug efflux transporters are involved in this process. Specific mutations in the transcriptional regulator PDR1 result in upregulation of the transporters. In addition, we showed that the PDR1 mutations can contribute to enhance virulence in animal models. In this study, we were interested to compare genomes of two specific C. glabrata-related isolates, one of which was azole susceptible (DSY562) while the other was azole resistant (DSY565). DSY565 contained a PDR1 mutation (L280F) and was isolated after a time-lapse of 50 d of azole therapy. We expected that genome comparisons between both isolates could reveal additional mutations reflecting host adaptation or even additional resistance mechanisms. The PacBio technology used here yielded 14 major contigs (sizes 0.18-1.6 Mb) and mitochondrial genomes from both DSY562 and DSY565 isolates that were highly similar to each other. Comparisons of the clinical genomes with the published CBS138 genome indicated important genome rearrangements, but not between the clinical strains. Among the unique features, several retrotransposons were identified in the genomes of the investigated clinical isolates. DSY562 and DSY565 each contained a large set of adhesin-like genes (101 and 107, respectively), which exceed by far the number of reported adhesins (63) in the CBS138 genome. Comparison between DSY562 and DSY565 yielded 17 nonsynonymous SNPs (among which the was the expected PDR1 mutation) as well as small size indels in coding regions (11) but mainly in adhesin-like genes. The genomes contained a DNA mismatch repair allele of MSH2 known to be involved in the so-called hyper-mutator phenotype of this yeast species and the number of accumulated mutations between both clinical isolates is consistent with the presence of a MSH2 defect. In conclusion, this study is the first to compare genomes of C. glabrata sequential clinical isolates using the PacBio technology as an approach. The genomes of these isolates taken in the same patient at two different time points exhibited limited variations, even if submitted to the host pressure. Copyright © 2017 Vale-Silva et al.


July 19, 2019  |  

A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species.

The genome of Fusarium oxysporum (Fo) consists of a set of eleven ‘core’ chromosomes, shared by most strains and responsible for housekeeping, and one or several accessory chromosomes. We sequenced a strain of Fo f.sp. radicis-cucumerinum (Forc) using PacBio SMRT sequencing. All but one of the core chromosomes were assembled into single contigs, and a chromosome that shows all the hallmarks of a pathogenicity chromosome comprised two contigs. A central part of this chromosome contains all identified candidate effector genes, including homologs of SIX6, SIX9, SIX11 and SIX 13. We show that SIX6 contributes to virulence of Forc. Through horizontal chromosome transfer (HCT) to a non-pathogenic strain, we also show that the accessory chromosome containing the SIX gene homologs is indeed a pathogenicity chromosome for cucurbit infection. Conversely, complete loss of virulence was observed in Forc016 strains that lost this chromosome. We conclude that also a non-wilt-inducing Fo pathogen relies on effector proteins for successful infection and that the Forc pathogenicity chromosome contains all the information necessary for causing root rot of cucurbits. Three out of nine HCT strains investigated have undergone large-scale chromosome alterations, reflecting the remarkable plasticity of Fo genomes.


July 19, 2019  |  

PacBio sequencing reveals transposable element as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae.

The sustainable cultivation of rice, which serves as staple food crop for more than half of the world’s population, is under serious threat due to the huge yield losses inflicted by rice blast disease caused by the globally destructive fungus Magnaporthe oryzae (Pyricularia oryzae) (Dean et al., 2012, Nalley et al., 2016, Deng et al., 2017). This filamentous ascomycete fungus is also capable of causing blast infection on other economically important cereal crops, including wheat, millet, and barley, making it the world’s most important plant pathogenic fungus (Zhong et al., 2016). The advent of whole-genome sequencing technology and the subsequent deployment of next-generation sequencing (NGS) strategies have successfully generated genome assemblies for over 50 isolates of M. oryzae, which have played an instrumental role in enhancing our understanding of how rice blast fungus undertakes host adaptation, host specificity, and host range expansion to overcome host resistance (Dean et al., 2005, Xue et al., 2012, Wu et al., 2015, Zhang et al., 2016). However, research findings obtained from comparative genomic studies conducted using the NGS-assembled genome do not present an in-depth account of the genomic features that contribute to the prevailing genomic variations among M. oryzae species, because NGS assemblies are highly fragmented and lack most of the lineage-specific (LS) regions, which are more plastic than the core genome and enriched with repeats and effector proteins (Raffaele and Kamoun, 2012, Faino et al., 2016).


July 19, 2019  |  

Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters.

The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications.The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.


July 7, 2019  |  

Finished genome sequence of Collimonas arenae Cal35.

We announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of genome content and synteny among collimonads. Copyright © 2015 Wu et al.


July 7, 2019  |  

Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii.

Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited. Copyright © 2015 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics.

Kitasatospora cheerisanensis KCTC 2395, producing bafilomycin antibiotics belonging to plecomacrolide group, was isolated from a soil sample at Mt. Jiri, Korea. The draft genome sequence contains 8.04 Mb with 73.6% G+C content and 7,810 open reading frames. All the genes for aerial mycelium and spore formations were confirmed in this draft genome. In phylogenetic analysis of MurE proteins (UDP-N-acetylmuramyl-L-alanyl-D-glutamate:DAP ligase) in a conserved dcw (division of cell wall) locus, MurE proteins of Kitasatospora species were placed in a separate clade between MurEs of Streptomyces species incorporating LL-diaminopimelic acid (DAP) and MurEs of Saccharopolyspora erythraea as well as Mycobacterium tuberculosis ligating meso-DAP. From this finding, it was assumed that Kitasatospora MurEs exhibit the substrate specificity for both LL-DAP and meso-DAP. The bafilomycin biosynthetic gene cluster was located in the left subtelomeric region. In 71.3 kb-long gene cluster, 17 genes probably involved in the biosynthesis of bafilomycin derivatives were deduced, including 5 polyketide synthase (PKS) genes comprised of 12 PKS modules.


July 7, 2019  |  

Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists.

To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a ‘symbiosis toolkit’, with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.


July 7, 2019  |  

Complete genome sequence of Bacillus amyloliquefaciens strain BH072, isolated from honey.

The genome of Bacillus amyloliquefaciens strain BH072, isolated from a honey sample and showing strong antimicrobial activity against plant pathogens, is 4.07 Mb and harbors 3,785 coding sequences (CDS). Several gene clusters for nonribosomal synthesis of antimicrobial peptides and a complete gene cluster for biosynthesis of mersacidin were detected. Copyright © 2015 Zhao et al.


July 7, 2019  |  

Dissecting the fungal biology of Bipolaris papendorfii: from phylogenetic to comparative genomic analysis.

Bipolaris papendorfii has been reported as a fungal plant pathogen that rarely causes opportunistic infection in humans. Secondary metabolites isolated from this fungus possess medicinal and anticancer properties. However, its genetic fundamental and basic biology are largely unknown. In this study, we report the first draft genome sequence of B. papendorfii UM 226 isolated from the skin scraping of a patient. The assembled 33.4 Mb genome encodes 11,015 putative coding DNA sequences, of which, 2.49% are predicted transposable elements. Multilocus phylogenetic and phylogenomic analyses showed B. papendorfii UM 226 clustering with Curvularia species, apart from other plant pathogenic Bipolaris species. Its genomic features suggest that it is a heterothallic fungus with a putative unique gene encoding the LysM-containing protein which might be involved in fungal virulence on host plants, as well as a wide array of enzymes involved in carbohydrate metabolism, degradation of polysaccharides and lignin in the plant cell wall, secondary metabolite biosynthesis (including dimethylallyl tryptophan synthase, non-ribosomal peptide synthetase, polyketide synthase), the terpenoid pathway and the caffeine metabolism. This first genomic characterization of B. papendorfii provides the basis for further studies on its biology, pathogenicity and medicinal potential. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

Genome sequence of Penicillium capsulatum strain ATCC 48735, a rare Penicillium species used in paper manufactories but that recently caused invasive infection.

The genus Penicillium phylogenetically belongs to Trichocomaceae, with approximately 300 reported species. The majority of these species are saprobic and commonly occur in soil. This paper reports the genome sequence of Penicillium capsulatum strain ATCC 48735, a rare Penicillium species used in paper manufactories and that was recently reported as a human-invasive opportunist. Copyright © 2015 Yang et al.


July 7, 2019  |  

Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana.

Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATa mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans. © 2015 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.