Menu
June 1, 2021  |  

Analysis of full-length metagenomic 16S genes by Single Molecule, Real-Time Sequencing

High-throughput sequencing of the complete 16S rRNA gene has become a valuable tool for characterizing microbial communities. However, the short reads produced by second-generation sequencing cannot provide taxonomic classification below the genus level. In this study, we demonstrate the capability of PacBio’s Single Molecule, Real-Time (SMRT) Sequencing to generate community profiles using mock microbial community samples from BEI Resources. We also evaluate multiplexing capabilities using PacBio barcodes on pooled samples comprising heterogeneous 16S amplicon populations representing soil, fecal, and mock communities.


June 1, 2021  |  

Full-length sequencing of HLA class I genes of more than 1000 samples provides deep insights into sequence variability

Aim: The vast majority of donor typing relies on sequencing exons 2 and 3 of HLA class I genes (HLA-A, -B, -C). With such an approach certain allele combinations do not result in the anticipated “high resolution” (G-code) typing, due to the lack of exon-phasing information. To resolve ambiguous typing results for a haplotype frequency project, we established a whole gene sequencing approach for HLA class I, facilitating also an estimation of the degree of sequence variability outside the commonly sequenced exons. Methods: Primers were developed flanking the UTR regions resulting in similar amplicon lengths of 4.2-4.4 kb. Using a 4-primer approach, secondary primers containing barcodes were combined with the gene specific primers to obtain barcoded full-gene amplicons in a single amplification step. Amplicons were pooled, purified, and ligated to SMRT bells (i.e. annealing points for sequencing primers) following standard protocols from Pacific Biosciences. Taking advantage of the SMRT chemistry, pools of 48-72 amplicons were sequenced full length and phased in single runs on a Pacific Biosciences RSII instrument. Demultiplexing was achieved using the SMRT portal. Sequence analysis was performed using NGSengine software (GenDx). Results: We successfully performed full-length gene sequencing of 1003 samples, harboring ambiguous typings of either HLA-A (n=46), HLA-B (n=304) or HLA-C (n=653). Despite the high per-read raw error rates typical for SMRT sequencing (~15%) the consensus sequence proved highly reliable. All consensus sequences for exons 2 and 3 were in full accordance with their MiSeq-derived sequences. Unambiguous allelic resolution was achieved for all samples. We observed novel intronic, exonic as well as UTR sequence variations for many of the alleles covered by our data set. This included sequences of 600 individuals with HLA-C*07:01/C*07:02 genotype revealing the extent of sequence variation outside the exons 2 and 3. Conclusion: Here we present a whole gene amplification and sequencing approach for HLA class I genes. The maturity of this approach was demonstrated by sequencing more than 1000 samples, achieving fully phased allelic sequences. Extensive sequencing of one common allele combination hints at the yet to discover diversity of the HLA system outside the commonly analyzed exons.


June 1, 2021  |  

Phased full-length SMRT Sequencing of HLA DPB1

Aim: In contrast to exon-based HLA-typing approaches, whole gene genotyping crucially depends on full-length sequences submitted to the IMGT/HLA Database. Currently, full-length sequences are provided for only 7 out of 520 HLA-DPB1 alleles. Therefore, we developed a fully phased whole-gene sequencing approach for DPB1, to facilitate further exploration of the allelic structure at this locus. Methods: Primers were developed flanking the UTR-regions of DPB1 resulting in a 12 kb amplicon. Using a 4-primer approach, secondary primers containing barcodes were combined with the gene-specific primers to obtain barcoded full-gene amplicons in a single amplification step. Amplicons were pooled, purified, and ligated to SMRT bells (i.e. annealing points for sequencing primers) following standard protocols from Pacific Biosciences. Taking advantage of the SMRT chemistry, pools of 48 amplicons were sequenced full length in single runs on a Pacific Biosciences RSII instrument. Demultiplexing was performed using the SMRT portal. Sequence analysis was performed using the NGSengine software (GenDx). Results: We analyzed a set of 48 randomly picked samples. With 3 exceptions due to PCR failure, all genotype assignments conformed to standard genotyping results based on exons 2 and 3. Allelic proportions for heterozygous positions were evenly distributed (range 0.4 – 0.6) for all samples, suggesting unbiased amplifications. Despite the high per-read raw error rates typical for SMRT sequencing (~15%) the consensus sequence proved highly reliable. All consensus sequences for exons 2 and 3 were in full accordance with their MiSeq-derived sequences. We describe novel intronic sequence variation of the 7 so far genomically defined alleles, as well as 7 whole-length DPB1 alleles with hitherto unknown intronic regions. One of these alleles (HLA-DPB1*131:01) is classified as rare. Conclusion: Here we present a whole gene amplification and sequencing workflow for DPB1 alleles utilizing single molecule real-time (SMRT) sequencing from Pacific Biosciences. Validation of consensus sequences against known exonic sequences highlights the reliability of this technology. This workflow will facilitate amending the IMGT/HLA Database for DPB1.


June 1, 2021  |  

Highly sensitive and cost-effective detection of BRCA1 and BRCA2 cancer variants in FFPE samples using Multiplicom’s MASTR technology & Single Molecule, Real-Time (SMRT) Sequencing

Specific mutations in BRCA1 and BRCA2 have been shown to be associated with several types of cancers. Molecular profiling of cancer samples requires assays capable of accurately detecting the entire spectrum of variants, including those at relatively low frequency. Next-Generation Sequencing (NGS) has been a powerful tool for researchers to better understand cancer genetics. Here we describe a targeted re-sequencing workflow that combines barcoded amplification of BRCA1 and BRCA2 exons from 12 FFPE tumor samples using Multiplicom’s MASTR technology with PacBio SMRT Sequencing. This combination allows for the accurate detection of variants in a cost-effective and timely manner.


June 1, 2021  |  

Full-length cDNA sequencing for genome annotation and analysis of alternative splicing

In higher eukaryotic organisms, the majority of multi-exon genes are alternatively spliced. Different mRNA isoforms from the same gene can produce proteins that have distinct properties and functions. Thus, the importance of understanding the full complement of transcript isoforms with potential phenotypic impact cannot be understated. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq protocol developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences to survey transcriptome isoform diversity useful for gene discovery and annotation. Knowledge of the complete isoform repertoire is also key for accurate quantification of isoform abundance. As most transcripts range from 1 – 10 kb, fully intact RNA molecules can be sequenced using SMRT Sequencing without requiring fragmentation or post-sequencing assembly. Our open-source computational pipeline delivers high-quality, non-redundant sequences for unambiguous identification of alternative splicing events, alternative transcriptional start sites, polyA tail, and gene fusion events. We applied the Iso-Seq method to the maize (Zea mays) inbred line B73. Full-length cDNAs from six diverse tissues were barcoded and sequenced across multiple size-fractionated SMRTbell libraries. A total of 111,151 unique transcripts were identified. More than half of these transcripts (57%) represented novel, sometimes tissue-specific, isoforms of known genes. In addition to the 2250 novel coding genes and 860 lncRNAs discovered, the Iso-Seq dataset corrected errors in existing gene models, highlighting the value of full-length transcripts for whole gene annotations.


June 1, 2021  |  

Targeted sequencing of genes from soybean using NimbleGen SeqCap EZ and PacBio SMRT Sequencing

Full-length gene capture solutions offer opportunities to screen and characterize structural variations and genetic diversity to understand key traits in plants and animals. Through a combined Roche NimbleGen probe capture and SMRT Sequencing strategy, we demonstrate the capability to resolve complex gene structures often observed in plant defense and developmental genes spanning multiple kilobases. The custom panel includes members of the WRKY plant-defense-signaling family, members of the NB-LRR disease-resistance family, and developmental genes important for flowering. The presence of repetitive structures and low-complexity regions makes short-read sequencing of these genes difficult, yet this approach allows researchers to obtain complete sequences for unambiguous resolution of gene models. This strategy has been applied to genomic DNA samples from soybean coupled with barcoding for multiplexing.


June 1, 2021  |  

Long read sequencing technology to solve complex genomic regions assembly in plants

Numerous whole genome sequencing projects already achieved or ongoing have highlighted the fact that obtaining a high quality genome sequence is necessary to address comparative genomics questions such as structural variations among genotypes and gain or loss of specific function. Despite the spectacular progress that has been done regarding sequencing technologies, accurate and reliable data are still challenging, at the whole genome scale but also when targeting specific genomic regions. These issues are even more noticeable for complex plant genomes. Most plant genomes are known to be particularly challenging due to their size, high density of repetitive elements and various levels of ploidy. To overcome these issues, we have developed a strategy in order to reduce the genome complexity by using the large insert BAC libraries combined with next generation sequencing technologies. We have compared two different technologies (Roche-454 and Pacific Biosciences PacBio RS II) to sequence pools of BAC clones in order to obtain the best quality sequence. We targeted nine BAC clones from different species (maize, wheat, strawberry, barley, sugarcane and sunflower) known to be complex in terms of sequence assembly. We sequenced the pools of the nine BAC clones with both technologies. We have compared results of assembly and highlighted differences due to the sequencing technologies used. We demonstrated that the long reads obtained with the PacBio RS II technology enables to obtain a better and more reliable assembly notably by preventing errors due to duplicated or repetitive sequences in the same region.


June 1, 2021  |  

Application specific barcoding strategies for SMRT Sequencing

Over the last few years, several advances were implemented in the PacBio RS II System to maximize throughput and efficiency while reducing the cost per sample. The number of useable bases per SMRT Cell now exceeds 1 Gb with the latest P6-C4 chemistry and 6-hour movies. For applications such as microbial sequencing, targeted sequencing, Iso-Seq (full-length isoform sequencing) and Nimblegen’s target enrichment method, current SMRT Cell yields could be an excess relative to project requirements. To this end, barcoding is a viable option for multiplexing samples. For microbial sequencing, multiplexing can be accomplished by tagging sheared genomic DNA during library construction with modified SMRTbell adapters. We studied the performance of 2- to 8-plex microbial sequencing. For full-length amplicon sequencing such as HLA typing, amplicons as large as 5 kb may be barcoded during amplification using barcoded locus-specific primers. Alternatively, amplicons may be barcoded during SMRTbell library construction using barcoded SMRTbell adapters. The preferred barcoding strategy depends on the user’s existing workflow and flexibility to changing and/or updating existing workflows. Using barcoded adapters, five Class I and II genes (3.3 – 5.8 kb) x 96 patients can be multiplexed and typed. For Iso-Seq full-length cDNA sequencing, barcodes are incorporated during 1st-strand synthesis and are enabled by tailing the oligo-dT primer with any PacBio published 16-bp barcode sequences. RNA samples from 6 maize tissues were multiplexed to generate barcoded cDNA libraries. The NimbleGen SeqCap Target Enrichment method, combined with PacBio’s long-read sequencing, provides comprehensive view of multi-kilobase contiguous regions, both exonic and intronic regions. To make this cost effective, we recommend barcoding samples for pooling prior to target enrichment and capture. Here, we present specific examples of strategies and best practices for multiplexing samples for different applications for SMRT Sequencing. Additionally, we describe recommendations for analyzing barcoded samples.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome SMRT Sequencing

The increased throughput of the RS II and Sequel Systems enables multiple microbes to be sequenced on a single SMRT Cell. This multiplexing can be readily achieved by simply incorporating a unique barcode for each microbe into the SMRTbell adapters after shearing genomic DNA using a streamlined library construction process. Incorporating a barcode without the requirement for PCR amplification prevents the loss of epigenetic information (e.g., methylation signatures), and the generation of chimeric sequences, while the modified protocol eliminates the need to build several individual SMRTbell libraries. We multiplexed up to 8 unique strains of H. pylori. Each strain was sheared, and processed through adapter ligation in a single, addition only reaction. The barcoded strains were then pooled in equimolar quantities, and processed through the remainder of the library preparation and purification steps. We demonstrate successful de novo microbial assembly and epigenetic analysis from all multiplexes (2 through 8-plex) using standard tools within SMRT Link Analysis using data generated from a single SMRTbell library, run on a single SMRT Cell. This process facilitates the sequencing of multiple microbial genomes in a single day, greatly increasing throughput and reducing costs per genome assembly.


June 1, 2021  |  

Highly sensitive and cost-effective detection of somatic cancer variants using single-molecule, real-time sequencing

Next-Generation Sequencing (NGS) technologies allow for molecular profiling of cancer samples with high sensitivity and speed at reduced cost. For efficient profiling of cancer samples, it is important that the NGS methods used are not only robust, but capable of accurately detecting low-frequency somatic mutations. Single Molecule, Real-Time (SMRT) Sequencing offers several advantages, including the ability to sequence single molecules with very high accuracy (>QV40) using the circular consensus sequencing (CCS) approach. The availability of genetically defined, human genomic reference standards provides an industry standard for the development and quality control of molecular assays for studying cancer variants. Here we characterize SMRT Sequencing for the detection of low-frequency somatic variants using the Quantitative Multiplex DNA Reference Standards from Horizon Discovery, combined with amplification of the variants using the Multiplicom Tumor Hotspot MASTR Plus assay. First, we sequenced a reference standard containing precise allelic frequencies from 1% to 24.5% for major oncology targets verified using digital PCR. This reference material recapitulates the complexity of tumor composition and serves as a well-characterized control. The control sample was amplified using the Multiplicom Tumor Hotspot MASTR Plus assay that targets 252 amplicons (121-254 bp) from 26 relevant cancer genes, which includes all 11 variants in the control sample. Next, we sequenced control samples prepared by SeraCare Life Sciences, which contained a defined mutation at allelic frequencies from 10% down to 0.1%. The wild type and mutant amplicons were serially diluted, sequenced and analyzed using SMRT Sequencing to identify the variants and determine the observed frequency. The random error profile and high-accuracy CCS reads make it possible to accurately detect low-frequency somatic variants.


June 1, 2021  |  

Candidate gene screening using long-read sequencing

We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.


June 1, 2021  |  

Application-specific barcoding strategies for SMRT Sequencing

The increased sequencing throughput creates a need for multiplexing for several applications. We are here detailing different barcoding strategies for microbial sequencing, targeted sequencing, Iso-Seq full-length isoform sequencing, and Roche NimbleGen’s target enrichment method.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome SMRT Sequencing

As the throughput of the PacBio Systems continues to increase, so has the desire to fully utilize SMRT Cell sequencing capacity to multiplex microbes for whole genome sequencing. Multiplexing is readily achieved by incorporating a unique barcode for each microbe into the SMRTbell adapters and using a streamlined library preparation process. Incorporating barcodes without PCR amplification prevents the loss of epigenetic information and the generation of chimeric sequences, while eliminating the need to generate separate SMRTbell libraries. We multiplexed the genomes of up to 8 unique strains of H. pylori. Each genome was sheared and processed through adapter ligation in a single, addition-only reaction. The barcoded samples were pooled in equimolar quantities and a single SMRTbell library was prepared. We demonstrate successful de novo microbial assembly from all multiplexes tested (2- through 8-plex) using data generated from a single SMRTbell library, run on a single SMRT Cell with the PacBio RS II, and analyzed with standard SMRT Analysis assembly methods. This strategy was successful using both small (1.6 Mb, H. pylori) and medium (5 Mb, E. coli) genomes. This protocol facilitates the sequencing of multiple microbial genomes in a single run, greatly increasing throughput and reducing costs per genome.


June 1, 2021  |  

Characterization of the Poly-T variants in the TOMM40 gene using PacBio long reads

Genes associated with several neurological disorders have been shown to be highly polymorphic. Targeted sequencing of these genes using NGS technologies is a powerful way to increase the cost-effectiveness of variant discovery and detection. However, for a comprehensive view of these target genes, it is necessary to have complete and uniform coverage across regions of interest. Unfortunately, short-read sequencing technologies are not ideal for these types of studies as they are prone to mis-mapping and often fail to span repetitive regions. Targeted sequencing with PacBio long reads provides the unique advantage of single-molecule observations of complex genomic regions. PacBio long reads not only provide continuous sequence data though polymorphic or repetitive regions, but also have no GC bias. Here we describe the characterization of the poly-T locus in TOMM40, a gene known to be associated with progression to Alzheimer’s, using PacBio long reads. Probes were designed to capture a 20 kb region comprising the TOMM40 and ApoE genes. Target regions were captured in multiple cell lines and sequencing libraries made using standard sample preparation methods. We will present our results on the poly-T structural variants that we observed in TOMM40 in these cell lines. We will also present our results on probe design optimization and barcoding strategies for a cost-effective solution.


June 1, 2021  |  

Target enrichment using a neurology panel for 12 barcoded genomic DNA samples on the PacBio SMRT Sequencing platform

Target enrichment is a powerful tool for studies involved in understanding polymorphic SNPs with phasing, tandem repeats, and structural variations. With increasing availability of reference genomes, researchers can easily design a cost-effective targeted investigation with custom probes specific to regions of interest. Using PacBio long-read technology in conjunction with probe capture, we were able to sequence multi-kilobase enriched regions to fully investigate intronic and exonic regions, distinguish haplotypes, and characterize structural variations. Furthermore, we demonstrate this approach is advantageous for studying complex genomic regions previously inaccessible through other sequencing platforms. In the present work, 12 barcoded genomic DNA (gDNA) samples were sheared to 6 kb for target enrichment analysis using the Neurology panel provided by Roche NimbleGen. Probe-captured DNA was used to make SMRTbell libraries for SMRT Sequencing on the PacBio RS II. Our results demonstrate the ability to multiplex 12 samples and achieve 1300x enrichment of targeted regions. In addition, we achieved an even representation of on-target rate of 70% across the 12 barcoded genomic DNA samples.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.