Menu
July 19, 2019  |  

DNA methylation on N6-adenine in C. elegans.

In mammalian cells, DNA methylation on the fifth position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC, as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N(6)-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylations of histone H3K4 and adenines and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. Copyright © 2015 Elsevier Inc. All rights reserved.


July 19, 2019  |  

Methylation in Mycobacterium tuberculosis is lineage specific with associated mutations present globally.

DNA methylation is an epigenetic modification of the genome involved in regulating crucial cellular processes, including transcription and chromosome stability. Advances in PacBio sequencing technologies can be used to robustly reveal methylation sites. The methylome of the Mycobacterium tuberculosis complex is poorly understood but may be involved in virulence, hypoxic survival and the emergence of drug resistance. In the most extensive study to date, we characterise the methylome across the 4 major lineages of M. tuberculosis and 2 lineages of M. africanum, the leading causes of tuberculosis disease in humans. We reveal lineage-specific methylated motifs and strain-specific mutations that are abundant globally and likely to explain loss of function in the respective methyltransferases. Our work provides a set of sixteen new complete reference genomes for the Mycobacterium tuberculosis complex, including complete lineage 5 genomes. Insights into lineage-specific methylomes will further elucidate underlying biological mechanisms and other important phenotypes of the epi-genome.


July 7, 2019  |  

SMRT sequencing of the Campylobacter coli BfR-CA-9557 genome sequence reveals unique methylation motifs.

Campylobacter species are the most prevalent bacterial pathogen causing acute enteritis worldwide. In contrast to Campylobacter jejuni, about 5 % of Campylobacter coli strains exhibit susceptibility to restriction endonuclease digestion by DpnI cutting specifically 5′-G(m)ATC-3′ motifs. This indicates significant differences in DNA methylation between both microbial species. The goal of the study was to analyze the methylome of a C. coli strain susceptible to DpnI digestion, to identify its methylation motifs and restriction modification systems (RM-systems), and compare them to related organisms like C. jejuni and Helicobacter pylori. Using one SMRT cell and the PacBio RS sequencing technology followed by PacBio Modification and Motif Analysis the complete genome of the DpnI susceptible strain C. coli BfR-CA-9557 was sequenced to 500-fold coverage and assembled into a single contig of 1.7 Mbp. The genome contains a CJIE1-like element prophage and is phylogenetically closer to C. coli clade 1 isolates than clade 3. 45,881 6-methylated adenines (ca. 2.7 % of genome positions) that are predominantly arranged in eight different methylation motifs and 1,788 4-methylated cytosines (ca. 0.1 %) have been detected. Only two of these motifs correspond to known restriction modification motifs. Characteristic for this methylome was the very high fraction of methylation of motifs with mostly above 99 %.Only five dominant methylation motifs have been identified in C. jejuni, which have been associated with known RM-systems. C. coli BFR-CA-9557 shares one (RAATTY) of these, but four ORFs could be assigned to putative Type I RM-systems, seven ORFs to Type II RM-systems and three ORFs to Type IV RM-systems. In accordance with DpnI prescreening RM-system IIP, methylation of GATC motifs was detected in C. coli BfR-CA-9557. A homologous IIP RM-system has been described for H. pylori. The remaining methylation motifs are specific for C. coli BfR-CA-9557 and have been neither detected in C. jejuni nor in H. pylori. The results of this study give us new insights into epigenetics of Campylobacteraceae and provide the groundwork to resolve the function of RM-systems in C. coli.


July 7, 2019  |  

Methods for genome-wide methylome profiling of Campylobacter jejuni.

Methylation has a profound role in the regulation of numerous biological processes in bacteria including virulence. The study of methylation in bacteria has greatly advanced thanks to next-generation sequencing technologies. These technologies have expedited the process of uncovering unique features of many bacterial methylomes such as characterizing previously uncharacterized methyltransferases, cataloging genome-wide DNA methylations in bacteria, identifying the frequency of methylation at particular genomic loci, and revealing regulatory roles of methylation in the biology of various bacterial species. For instance, methylation has been cited as a potential source for the pathogenicity differences observed in C. jejuni strains with syntenic genomes as seen in recent publications. Here, we describe the methodology for the use of Pacific Biosciences’ single molecule real-time (SMRT) sequencing for detecting methylation patterns in C. jejuni and bioinformatics tools to profile its methylome.


July 7, 2019  |  

Complete genome sequence of Acinetobacter sp. strain NCu2D-2 isolated from a mouse.

Whole-genome sequencing of Acinetobacter sp. strain NCu2D-2, isolated from the trachea of a mouse, revealed the presence of a plasmid of 309,964 bp with little overall similarity to known plasmids and enriched in insertion sequences (ISs) closely related to IS elements known from the nosocomial pathogen Acinetobacter baumannii. Copyright © 2017 Blaschke and Wilharm.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.