Menu
July 7, 2019  |  

Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.

The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ~75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50 = 222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.


July 7, 2019  |  

CHOgenome.org 2.0: Genome resources and website updates.

Chinese hamster ovary (CHO) cells are a major host cell line for the production of therapeutic proteins, and CHO cell and Chinese hamster (CH) genomes have recently been sequenced using next-generation sequencing methods. CHOgenome.org was launched in 2011 (version 1.0) to serve as a database repository and to provide bioinformatics tools for the CHO community. CHOgenome.org (version 1.0) maintained GenBank CHO-K1 genome data, identified CHO-omics literature, and provided a CHO-specific BLAST service. Recent major updates to CHOgenome.org (version 2.0) include new sequence and annotation databases for both CHO and CH genomes, a more user-friendly website, and new research tools, including a proteome browser and a genome viewer. CHO cell-line specific sequences and annotations facilitate cell line development opportunities, several of which are discussed. Moving forward, CHOgenome.org will host the increasing amount of CHO-omics data and continue to make useful bioinformatics tools available to the CHO community. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

The genus Brachypodium as a model for perenniality and polyploidy

The genus Brachypodium contains annual and perennial species with both diploid and polyploid genomes. Like the annual species B. distachyon, some of the perennial and polyploid species have traits compatible with use as a model system (e.g. small genomes, rapid generation time, self-fertile and easy to grow). Thus, there is an opportunity to leverage the resources and knowledge developed for B. distachyon to use other Brachypodium species as models for perenniality and the regulation and evolution of polyploid genomes. There are two factors driving an increased interest in perenniality. First, several perennial grasses are being developed as biomass crops for the sustainable production of biofuel and it would be useful to have a perennial model system to rapidly test biotechnological crop improvement strategies for undesirable impacts on perenniality and winter hardiness. In addition, a deeper understanding of the molecular mechanisms underlying perenniality could be used to design strategies for improving energy crops, for example, by changing resource allocation during growth or by altering the onset of dormancy. The second factor driving increased interest in perenniality is the potential environmental benefits of developing perennial grain crops. B. sylvaticum is a perennial with attributes suitable for use as a perennial model system. A high efficiency transformation system has been developed and a genome sequencing project is underway. Since many important crops, including emerging biomass crops, are polyploid, there is a pressing need to understand the rules governing the evolution and regulation of polyploid genomes. Unfortunately, it is difficult to study polyploid crop genomes because of their size and the difficulty of manipulating those plants in the laboratory. By contrast, B. hybridum has a small polyploid genome and is easy to work with in the laboratory. In addition, analysis of the B. hybridum genome, will be greatly aided by the genome sequences of the two extant diploid species (B. distachyon and B. stacei) that apparently gave rise to B. hybridum. Availability of high quality reference genomes for these three species will be a powerful resource for the study of polyploidy.


July 7, 2019  |  

The Brachypodium distachyon reference genome

Grasses provide the bulk of human calories but improvement in grass yields is hindered by the characteristically large and complex genomes of these species; the genomes of wheat, maize, and sugar cane are 17,000, 2300, and 10,000 Mb, respectively. Brachypodium distachyon has one of the smallest genomes of all grasses at 272 Mb, and a number of key traits that make it a good model grass. Brachypodium was the fourth sequenced grass genome, after rice, Sorghum, and maize, and was the first sequenced in the Pooideae subfamily, a diverse group that includes wheat, barley, oat, and rye. The Brachypodium genome was sequenced using a whole genome shotgun approach with Sanger sequencing and is nearly complete with 99.6 % of the sequences anchored to five chromosomes. Sequencing of Brachypodium enabled comparative genomic analysis of grass genomes and shed light on processes involved in chromosome fusions and maintenance of a small genome. The high-quality Brachypodium genome sequence provides a framework for gene expression atlases, resequencing, quantitative trait loci (QTL) mapping, GWAS, and ENCODE datasets. The wealth of Brachypodium genomic resources have cemented its utility as a model organism and will facilitate translational work for improving the grasses that feed the world.


July 7, 2019  |  

Insights into sex chromosome evolution and aging from the genome of a short-lived fish.

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution “in action.” Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb). Copyright © 2015 Elsevier Inc. All rights reserved.


July 7, 2019  |  

The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera.

Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393?Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140?My. We show that fusion chromosomes have retained the ancestral chromosome segments and very few rearrangements have occurred across the fusion sites. The same, shortest ancestral chromosomes have independently participated in fusion events in species with smaller karyotypes. The short chromosomes have higher rearrangement rate than long ones. These characteristics highlight distinctive features of the evolutionary dynamics of butterflies and moths.


July 7, 2019  |  

The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to PacBio.

The advent of next-generation sequencing (NGS) technologies has transformed the way microsatellites are isolated for ecological and evolutionary investigations. Recent attempts to employ NGS for microsatellite discovery have used the 454, Illumina, and Ion Torrent platforms, but other methods including single-molecule real-time DNA sequencing (Pacific Biosciences or PacBio) remain viable alternatives. We outline a workflow from sequence quality control to microsatellite marker validation in three plant species using PacBio circular consensus sequencing (CCS). We then evaluate the performance of PacBio CCS in comparison with other NGS platforms for microsatellite isolation, through simulations that focus on variations in read length, read quantity and sequencing error rate. Although quality control of CCS reads reduced microsatellite yield by around 50%, hundreds of microsatellite loci that are expected to have improved conversion efficiency to functional markers were retrieved for each species. The simulations quantitatively validate the advantages of long reads and emphasize the detrimental effects of sequencing errors on NGS-enabled microsatellite development. In view of the continuing improvement in read length on NGS platforms, sequence quality and the corresponding strategies of quality control will become the primary factors to consider for effective microsatellite isolation. Among current options, PacBio CCS may be optimal for rapid, small-scale microsatellite development due to its flexibility in scaling sequencing effort, while platforms such as Illumina MiSeq will provide cost-efficient solutions for multispecies microsatellite projects. © 2014 John Wiley & Sons Ltd.


July 7, 2019  |  

Characterization of biological pathways associated with a 1.37 Mbp genomic region protective of hypertension in Dahl S rats.

The goal of the present study was to narrow a region of chromosome 13 to only several genes and then apply unbiased statistical approaches to identify molecular networks and biological pathways relevant to blood-pressure salt sensitivity in Dahl salt-sensitive (SS) rats. The analysis of 13 overlapping subcongenic strains identified a 1.37 Mbp region on chromosome 13 that influenced the mean arterial blood pressure by at least 25 mmHg in SS rats fed a high-salt diet. DNA sequencing and analysis filled genomic gaps and provided identification of five genes in this region, Rfwd2, Fam5b, Astn1, Pappa2, and Tnr. A cross-platform normalization of transcriptome data sets obtained from our previously published Affymetrix GeneChip dataset and newly acquired RNA-seq data from renal outer medullary tissue provided 90 observations for each gene. Two Bayesian methods were used to analyze the data: 1) a linear model analysis to assess 243 biological pathways for their likelihood to discriminate blood pressure levels across experimental groups and 2) a Bayesian graphical modeling of pathways to discover genes with potential relationships to the candidate genes in this region. As none of these five genes are known to be involved in hypertension, this unbiased approach has provided useful clues to be experimentally explored. Of these five genes, Rfwd2, the gene most strongly expressed in the renal outer medulla, was notably associated with pathways that can affect blood pressure via renal transcellular Na(+) and K(+) electrochemical gradients and tubular Na(+) transport, mitochondrial TCA cycle and cell energetics, and circadian rhythms. Copyright © 2014 the American Physiological Society.


July 7, 2019  |  

Life cycles, fitness decoupling and the evolution of multicellularity.

Cooperation is central to the emergence of multicellular life; however, the means by which the earliest collectives (groups of cells) maintained integrity in the face of destructive cheating types is unclear. One idea posits cheats as a primitive germ line in a life cycle that facilitates collective reproduction. Here we describe an experiment in which simple cooperating lineages of bacteria were propagated under a selective regime that rewarded collective-level persistence. Collectives reproduced via life cycles that either embraced, or purged, cheating types. When embraced, the life cycle alternated between phenotypic states. Selection fostered inception of a developmental switch that underpinned the emergence of collectives whose fitness, during the course of evolution, became decoupled from the fitness of constituent cells. Such development and decoupling did not occur when groups reproduced via a cheat-purging regime. Our findings capture key events in the evolution of Darwinian individuality during the transition from single cells to multicellularity.


July 7, 2019  |  

Get your high-quality low-cost genome sequence.

The study of whole-genome sequences has become essential for almost all branches of biological research. Next-generation sequencing (NGS) has revolutionized the scalability, speed, and resolution of sequencing and brought genomic science within reach of academic laboratories that study non-model organisms. Here, we show that a high-quality draft genome of a eukaryote can be obtained at relatively low cost by exploiting a hybrid combination of sequencing strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena.

Sex chromosomes harbour a primary sex-determining signal that triggers sexual development of the organism. However, diverse sex chromosome systems have been evolved in vertebrates. Here we use positional cloning to identify the sex-determining locus of a medaka-related fish, Oryzias dancena, and find that the locus on the Y chromosome contains a cis-regulatory element that upregulates neighbouring Sox3 expression in developing gonad. Sex-reversed phenotypes in Sox3(Y) transgenic fish, and Sox3(Y) loss-of-function mutants all point to its critical role in sex determination. Furthermore, we demonstrate that Sox3 initiates testicular differentiation by upregulating expression of downstream Gsdf, which is highly conserved in fish sex differentiation pathways. Our results not only provide strong evidence for the independent recruitment of Sox3 to male determination in distantly related vertebrates, but also provide direct evidence that a novel sex determination pathway has evolved through co-option of a transcriptional regulator potentially interacted with a conserved downstream component.


July 7, 2019  |  

Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors.

Mammals express the sialic acids N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) on cell surfaces, where they act as receptors for pathogens, including influenza A virus (IAV). Neu5Gc is synthesized from Neu5Ac by the enzyme cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH). In humans, this enzyme is inactive and only Neu5Ac is produced. Ferrets are susceptible to human-adapted IAV strains and have been the dominant animal model for IAV studies. Here we show that ferrets, like humans, do not synthesize Neu5Gc. Genomic analysis reveals an ancient, nine-exon deletion in the ferret CMAH gene that is shared by the Pinnipedia and Musteloidia members of the Carnivora. Interactions between two human strains of IAV with the sialyllactose receptor (sialic acid-a2,6Gal) confirm that the type of terminal sialic acid contributes significantly to IAV receptor specificity. Our results indicate that exclusive expression of Neu5Ac contributes to the susceptibility of ferrets to human-adapted IAV strains.


July 7, 2019  |  

Genome organization of the vg1 and nodal3 gene clusters in the allotetraploid frog Xenopus laevis.

Extracellular factors belonging to the TGF-ß family play pivotal roles in the formation and patterning of germ layers during early Xenopus embryogenesis. Here, we show that the vg1 and nodal3 genes of Xenopus laevis are present in gene clusters on chromosomes XLA1L and XLA3L, respectively, and that both gene clusters have been completely lost from the syntenic S chromosome regions. The presence of gene clusters and chromosome-specific gene loss were confirmed by cDNA FISH analyses. Sequence and expression analyses revealed that paralogous genes in the vg1 and nodal3 clusters on the L chromosomes were also altered compared to their Xenopus tropicalis orthologs. X. laevis vg1 and nodal3 paralogs have potentially become pseudogenes or sub-functionalized genes and are expressed at different levels. As X. tropicalis has a single vg1 gene on chromosome XTR1, the ancestral vg1 gene in X. laevis appears to have been expanded on XLA1L. Of note, two reported vg1 genes, vg1(S20) and vg1(P20), reside in the cluster on XLA1L. The nodal3 gene cluster is also present on X. tropicalis chromosome XTR3, but phylogenetic analysis indicates that nodal3 genes in X. laevis and X. tropicalis were independently expanded and/or evolved in concert within each cluster by gene conversion. These findings provide insights into the function and molecular evolution of TGF-ß family genes in response to allotetraploidization. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Identification of mutant genes and introgressed tiger salamander DNA in the laboratory axolotl, Ambystoma mexicanum.

The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr (a) ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr (a) has a 142?bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr (a) significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.