Menu
June 1, 2021  |  

Mitochondrial DNA sequencing using PacBio SMRT technology

Mitochondrial DNA (mtDNA) is a compact, double-stranded circular genome of 16,569 bp with a cytosine-rich light (L) chain and a guanine-rich heavy (H) chain. mtDNA mutations have been increasingly recognized as important contributors to an array of human diseases such as Parkinson’s disease, Alzheimer’s disease, colorectal cancer and Kearns–Sayre syndrome. mtDNA mutations can affect all of the 1000-10,000 copies of the mitochondrial genome present in a cell (homoplasmic mutation) or only a subset of copies (heteroplasmic mutation). The ratio of normal to mutant mtDNAs within cells is a significant factor in whether mutations will result in disease, as well as the clinical presentation, penetrance, and severity of the phenotype. Over time, heteroplasmic mutations can become homoplastic due to differential replication and random assortment. Full characterization of the mitochondrial genome would involve detection of not only homoplastic but heteroplasmic mutations, as well as complete phasing. Previously, we sequenced human mtDNA on the PacBio RS II System with two partially overlapping amplicons. Here, we present amplification-free, full-length sequencing of linearized mtDNA using the Sequel System. Full-length sequencing allows variant phasing along the entire mitochondrial genome, identification of heteroplasmic variants, and detection of epigenetic modifications that are lost in amplicon-based methods.


June 1, 2021  |  

High-quality de novo genome assembly and intra-individual mitochondrial instability in the critically endangered kakapo

The kakapo (Strigops habroptila) is a large, flightless parrot endemic to New Zealand. It is highly endangered with only ~150 individuals remaining, and intensive conservation efforts are underway to save this iconic species from extinction. These include genetic studies to understand critical genes relevant to fertility, adaptation and disease resistance, and genetic diversity across the remaining population for future breeding program decisions. To aid with these efforts, we have generated a high-quality de novo genome assembly using PacBio long-read sequencing. Using the new diploid-aware FALCON-Unzip assembler, the resulting genome of 1.06 Gb has a contig N50 of 5.6 Mb (largest contig 29.3 Mb), >350-times more contiguous compared to a recent short-read assembly of a closely related parrot (kea) species. We highlight the benefits of the higher contiguity and greater completeness of the kakapo genome assembly through examples of fully resolved genes important in wildlife conservation (contrasted with fragmented and incomplete gene resolution in short-read assemblies), in some cases even providing sequence for regions orthologous to gaps of missing sequence in the chicken reference genome. We also highlight the complete resolution of the kakapo mitochondrial genome, fully containing the mitochondrial control region which is missing from the previous dedicated kakapomitochondrial genome NCBI entry. For this region, we observed a marked heterogeneity in the number of tandem repeats in different mtDNAmolecules from a single bird tissue, highlighting the enhanced molecular resolution uniquely afforded by long-read, single-molecule PacBio sequencing.


June 1, 2021  |  

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The Circular Consensus Sequencing (CCS) analysis pipeline produces QV 30 data from each single intra-molecular multi-pass polymerase read, making it a reliable solution for detecting minor variant alleles with frequencies as low as 1 %. Long Amplicon Analysis (LAA) makes use of insert spanning full-length subreads originating from multiple individual copies of the target to generate highly accurate and phased consensus sequences (>QV50), offering a unique advantage for imputation free allele segregation and haplotype phasing. Here we present workflows and results for a range of SMRT Sequencing clinical applications. Specifically, we illustrate how the flexible multiplexing options, simple sample preparation methods and new developments in data analysis tools offered by PacBio in support of Sequel System 5.1 can come together in a variety of experimental designs to enable applications as diverse as high throughput HLA typing, mitochondrial DNA sequencing and viral vector integrity profiling of recombinant adeno-associated viral genomes (rAAV).


April 21, 2020  |  

Comparison of mitochondrial DNA variants detection using short- and long-read sequencing.

The recent advent of long-read sequencing technologies is expected to provide reasonable answers to genetic challenges unresolvable by short-read sequencing, primarily the inability to accurately study structural variations, copy number variations, and homologous repeats in complex parts of the genome. However, long-read sequencing comes along with higher rates of random short deletions and insertions, and single nucleotide errors. The relatively higher sequencing accuracy of short-read sequencing has kept it as the first choice of screening for single nucleotide variants and short deletions and insertions. Albeit, short-read sequencing still suffers from systematic errors that tend to occur at specific positions where a high depth of reads is not always capable to correct for these errors. In this study, we compared the genotyping of mitochondrial DNA variants in three samples using PacBio’s Sequel (Pacific Biosciences Inc., Menlo Park, CA, USA) long-read sequencing and illumina’s HiSeqX10 (illumine Inc., San Diego, CA, USA) short-read sequencing data. We concluded that, despite the differences in the type and frequency of errors in the long-reads sequencing, its accuracy is still comparable to that of short-reads for genotyping short nuclear variants; due to the randomness of errors in long reads, a lower coverage, around 37 reads, can be sufficient to correct for these random errors.


April 21, 2020  |  

The alternative reality of plant mitochondrial DNA: One ring does not rule them all.

Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.


April 21, 2020  |  

Complete mitochondrial genome of Hemiptelea davidii (Ulmaceae) and phylogenetic analysis

Hemiptelea davidii (Hance) Planch is a potential valuable forest tree in arid sandy environments. Here, the complete mitochondrial genome of H. davidii was assembled using a combination of the PacBio Sequel data and the Illumina Hiseq data. The mitochondrial genome is 460,941bp in length, including 37 protein-coding genes, 19 tRNA genes, and three rRNA genes. The GC content of the whole mito- chondrial genome is 44.84%. Phylogenetic analyses indicated that H. davidii is close with Cannabis and Morus species.


April 21, 2020  |  

The complete mitochondrial genome sequence of Schisandra chinensis (Austrobaileyales: Schisandraceae)

Chinese magnolia vine (Schisandra chinensis) is an economically important oriental medicinal plant that belongs to the Schisandraceae family. The complete mitochondrial genome sequence of S. chinensis was 946,141bp in length. A total of 45 genes was annotated, including 30 protein-coding genes, 12 tRNA genes, and 3 rRNA genes. A phylogenetic tree based on the mitochondrial genome demonstrated that S. chinensis was most closely related to Schisandra sphenanthera of the Schisandraceae family.


April 21, 2020  |  

The complete mitochondrial genome of the New Zealand parasitic roundworm Haemonchus contortus (Trichostrongyloidea: Haemonchidae) field strain NZ_Hco_NP

The complete mitochondrial genome of the New Zealand parasitic nematode Haemonchus contortus field strain NZ_Hco_NP was sequenced and annotated. The 14,001bp-long mitogenome contains 12 protein-coding genes (atp8 gene missing), two ribosomal RNAs, 22 transfer RNAs, and a 583bp non- coding region. Phylogenetic analysis showed that H. contortus NZ_Hco_NP forms a monophyletic clus- ter with the remaining three Haemonchidae species, and further illustrates the high levels of diversity and gene flow among Trichostrongylidae.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.