Menu
June 1, 2021  |  

Genomic Architecture of the KIR and MHC-B and -C Regions in Orangutan

PacBio 2013 User Group Meeting Presentation Slides: Lisbeth Guethlein from Stanford University School of Medicine looked at highly repetitive and variable immune regions of the orangutan genome. Guethlein reported that “PacBio managed to accomplish in a week what I have been working on for a couple years” (with Sanger sequencing), and the results were concordant. “Long story short, I was a happy customer.”


June 1, 2021  |  

Targeted SMRT Sequencing and phasing using Roche NimbleGen’s SeqCap EZ enrichment

As a cost-effective alternative to whole genome human sequencing, targeted sequencing of specific regions, such as exomes or panels of relevant genes, has become increasingly common. These methods typically include direct PCR amplification of the genomic DNA of interest, or the capture of these targets via probe-based hybridization. Commonly, these approaches are designed to amplify or capture exonic regions and thereby result in amplicons or fragments that are a few hundred base pairs in length, a length that is well-addressed with short-read sequencing technologies. These approaches typically provide very good coverage and can identify SNPs in the targeted region, but are unable to haplotype these variants. Here we describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with Pacific Biosciences’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase regions. While the SeqCap EZ technology is typically used to capture 200 bp fragments, we demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the flanking intronic regions. When combined with the long reads of SMRT Sequencing, multi-kilobase regions of the human genome can be phased and variants detected in exons, introns and intergenic regions.


June 1, 2021  |  

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability to detect more complicated variants and chromosome-level phasing. Moreover, with the recent advance of bioinformatics algorithms and tools, the computation tasks for completing high-quality de novo assembly of large genomes becomes feasible with commodity hardware. Ongoing development in sequencing technologies and bioinformatics will likely lead to routine generation of high-quality reference assemblies in the future. We discuss the current state of art and the challenges in bioinformatics toward such a goal. More specifically, explicit examples of pragmatic computational requirements for assembling mammalian-size genomes and algorithms suitable for processing diploid genomes are discussed.


June 1, 2021  |  

Complete resequencing of extended genomic regions using fosmid target capture and single molecule real-time (SMRT) long read sequencing technology.

A longstanding goal of genomic analysis is the identification of causal genetic factors contributing to disease. While the common disease/common variant hypothesis has been tested in many genome-wide association studies, few advancements in identifying causal variation have been realized, and instead recent findings point away from common variants towards aggregate rare variants as causal. A challenge is obtaining complete phased genomic sequences over extended genomic regions from sufficient numbers of cases and controls to identify all potential variation causal of a disease. To address this, we modified methods for targeted DNA isolation using fosmid technology and single-molecule, long-sequence-read generaton that combine for complete, haplotype-resolved resequencing across extended genomic subregions. As proof of principal, we validated the approach by resequencing four 800 kbp segments that span a major histocompatibility complex (MHC) common extended haplotype (CEH) associated with disease. The data revealed the extent of conservation exposing a near identity among four DR4 CEHs over conserved regions, detailing rare variation and measuring sequence accuracy. In a second test, we sequenced the complete KIR haplotypes from 8 individuals within a specific timeframe and cost. Single molecule long-read sequencing technology generated contiguous full-­length fosmid sequences of 30 to 40 kb in a single read, allowing assembly of resolved haplotypes with very little data processing. All of the sequences produced from these projects were contiguous, phased, with accuracy above 99.99%. The results demonstrated that cost-effective scale-­up is possible to generate scores to hundreds of phased chromosomal sequences of extended lengths that can encompass genomic regions associated with disease.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are important in understanding the genetic basis for human disease and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid aware de novo assembly of Craig Venter’s well-studied genome.


June 1, 2021  |  

Access full spectrum of polymorphisms in HLA class I & II genes, without imputation for disease association and evolutionary research.

MHC class I and II genes are critically monitored by high-resolution sequencing for organ transplant decisions due to their role in GVHD. Their direct or linkage-based causal association, have increased their prominence as targets for drug sensitivity, autoimmune, cancer and infectious disease research. Monitoring HLA genes can however be tricky due to their highly polymorphic nature. Allele-level resolution is thus strongly preferred. However, most studies were historically focused on peptide binding domains of the HLA genes, due to technological challenges. As a result knowledge about the functional role of polymorphisms outside of exons 2 and 3 of HLA genes was rather limited. There are also relatively few full-length gene references currently available in the IMGT HLA database. This made it difficult to quickly adopt high-throughput reference-reliant methods for allele-level HLA sequencing. Increasing awareness regarding role of regulatory region polymorphisms of HLA genes in disease association1, nonetheless have brought about a revolution in full-length HLA gene sequencing. Researchers are now exploring ways to obtain complete information for HLA genes and integrate it with the current HLA database so it can be interpreted used by clinical researchers. We have explored advantages of SMRT Sequencing to obtain fully phased, allele-specific sequences of HLA class I and II genes for 96 samples using completely De novo consensus generation approach for imputation-free 4-field typing. With long read lengths (average >10 kb) and consensus accuracy exceeding 99.999% (Q50), a comprehensive snapshot of variants in exons, introns and UTRs could be obtained for spectrum of polymorphisms in phase across SNP-poor regions. Such information can provide invaluable insights in future causality association and population diversity research.


June 1, 2021  |  

Immune regions are no longer incomprehensible with SMRT Sequencing

The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these efforts, the fine mapping of causal variants of immune genes for their well-documented association with cancer, drug-induced hypersensitivity and immune-related diseases, has been slower than expected. This has in many ways limited our understanding of the mechanisms leading to immune disease. In the present work, we demonstrate the advantages of long reads delivered by SMRT Sequencing for assembling complete haplotypes of MHC and KIR gene clusters, as well as calling correct genotypes of genes comprised within them. All the genotype information is detected at allele- level with full phasing information across SNP-poor regions. Genotypes were called correctly from targeted gene amplicons, haplotypes, as well as from a completely assembled 5 Mb contig of the MHC region from a de novo assembly of whole genome shotgun data. De novo analysis pipeline used in all these approaches allowed for reference-free analysis without imputation, a key for interrogation without prior knowledge about ethnic backgrounds. These methods are thus easily adoptable for previously uncharacterized human or non-human species.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are both important in understanding the genetic basis for human disease, and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid-aware de novo assembly of Craig Venter’s well-studied genome.


June 1, 2021  |  

Multiplex target enrichment using barcoded multi-kilobase fragments and probe-based capture technologies

Target enrichment capture methods allow scientists to rapidly interrogate important genomic regions of interest for variant discovery, including SNPs, gene isoforms, and structural variation. Custom targeted sequencing panels are important for characterizing heterogeneous, complex diseases and uncovering the genetic basis of inherited traits with more uniform coverage when compared to PCR-based strategies. With the increasing availability of high-quality reference genomes, customized gene panels are readily designed with high specificity to capture genomic regions of interest, thus enabling scientists to expand their research scope from a single individual to larger cohort studies or population-wide investigations. Coupled with PacBio® long-read sequencing, these technologies can capture 5 kb fragments of genomic DNA (gDNA), which are useful for interrogating intronic, exonic, and regulatory regions, characterizing complex structural variations, distinguishing between gene duplications and pseudogenes, and interpreting variant haplotyes. In addition, SMRT® Sequencing offers the lowest GC-bias and can sequence through repetitive regions. We demonstrate the additional insights possible by using in-depth long read capture sequencing for key immunology, drug metabolizing, and disease causing genes such as HLA, filaggrin, and cancer associated genes.


June 1, 2021  |  

Phased human genome assemblies with Single Molecule, Real-Time Sequencing

In recent years, human genomic research has focused on comparing short-read data sets to a single human reference genome. However, it is becoming increasingly clear that significant structural variations present in individual human genomes are missed or ignored by this approach. Additionally, remapping short-read data limits the phasing of variation among individual chromosomes. This reduces the newly sequenced genome to a table of single nucleotide polymorphisms (SNPs) with little to no information as to the co-linearity (phasing) of these variants, resulting in a “mosaic” reference representing neither of the parental chromosomes. The variation between the homologous chromosomes is lost in this representation, including allelic variations, structural variations, or even genes present in only one chromosome, leading to lost information regarding allelic-specific gene expression and function. To address these limitations, we have made significant progress integrating haplotype information directly into genome assembly process with long reads. The FALCON-Unzip algorithm leverages a string graph assembly approach to facilitate identification and separation of heterozygosity during the assembly process to produce a highly contiguous assembly with phased haplotypes representing the genome in its diploid state. The outputs of the assembler are pairs of sequences (haplotigs) containing the allelic differences, including SNPs and structural variations, present in the two sets of chromosomes. The development and testing of our de-novo diploid assembler was facilitated and carefully validated using inbred reference model organisms and F1 progeny, which allowed us to ascertain the accuracy and concordance of haplotigs relative to the two inbred parental assemblies. Examination of the results confirmed that our haplotype-resolved assemblies are “Gold Level” reference genomes having a quality similar to that of Sanger-sequencing, BAC-based assembly approaches. We further sequenced and assembled two well-characterized human samples into their respective phased diploid genomes with gap-free contig N50 sizes greater than 23 Mb and haplotig N50 sizes greater than 380 kb. Results of these assemblies and a comparison between the haplotype sets are presented.


June 1, 2021  |  

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types. However, reference databases are based largely on European populations, and the full extent of diversity in Africa remains poorly understood. Here, we present the first systematic characterisation of HLA diversity within Africa in the pilot phase of the MHC Diversity in Africa Project, together with an evaluation of methods to carry out scalable cost-effective, as well as reliable, typing of this region in African populations.To sample a geographically representative panel of African populations we obtained 125 samples, 25 each from the Zulu (South Africa), Igbo (Nigeria), Kalenjin (Kenya), Moroccan and Ashanti (Ghana) groups. For methods validation we included two controls from the International Histocompatibility Working Group (IHWG) collection with known typing information. Sanger typing and Illumina HiSeq X sequencing of these samples indicated potentially novel Class I and Class II alleles; however, we found poor correlation between HiSeq X sequencing and SBT for both classes. Long Range PCR and high resolution PacBio RS-II typing of 4 of these samples identified 7 novel Class II alleles, highlighting the high levels of diversity in these populations, and the need for long read sequencing approaches to characterise this comprehensively. We have now expanded this approach to the entire pilot set of 125 samples. We present these confirmed types and discuss a workflow for scaling this to 5000 individuals across Africa.The large number of new alleles identified in our pilot suggests the high level of African HLA diversity and the utility of high resolution methods. The MDAP project will provide a framework for accurate HLA typing, in addition to providing an invaluable resource for imputation in GWAS, boosting power to identify and resolve HLA disease associations.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.