X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, October 25, 2020

Podcast: Major sequencing projects should be done with long reads

Dan Geraghty explains that while there have been decades’ worth of studies associating the genetics of the major histocompatibility complex (MHC), and the highly polymorphic HLA class 1 and 2 genes, we still haven’t found the key mutations for a variety of different autoimmune diseases such as type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and others. Enormous amounts of linkage disequilibrium in these regions are one factor, as is getting information in phase, so larger stretches of sequence are needed. Recently Geraghty has begun using SMRT Technology with hopes of drilling down to the causal genetics. 

Read More »

Sunday, October 25, 2020

AGBT Virtual Poster: Insight into MHC and KIR genomic regions associated with autoimmune disease

Dan Geraghty from the Fred Hutchinson Cancer Research Center presents his AGBT poster on a new PacBio-based solution to sequence extended genomic regions — in this case, KIR and MHC, two of the most variable regions of the human genome. He reports data revealing for the first time regions that may be associated with autoimmune diseases such as diabetes, rheumatoid arthritis, and multiple sclerosis, and also shows that sequences were phased, complete, and highly accurate.

Read More »

Sunday, October 25, 2020

Podcast: Long-read sequencing dramatically improves blood matching – Steven Marsh

One of the popular questions on the Mendelspod program is how those doing sequencing decide between the quality of PacBio’s long reads and the cheaper short read technology, such as that of Illumina or Thermo Fisher. Steve Marsh, the Director of Bioinformatics at the Anthony Nolan Research Institute in London, provides the most clear and dramatic answer yet: use the PacBio system exclusively. Established in 1974 by the mother of a boy with a rare blood disease, the Anthony Nolan Institute is a world leader in blood crossmatching and donor/patient registries. Steve and his team at the Institute have dramatically…

Read More »

Sunday, October 25, 2020

AGBT Roche and PacBio Workshop: Towards precision medicine

Euan Ashley speaks about precision medicine and said clinical-grade analysis has been limited by complex regions in the human genome. His key theme,”Precision medicine needs to be accurate medicine,” was illustrated with several examples where short-read sequencing or traditional clinical sequencing methods failed to be accurate. Also included: targeted RNA sequencing and gene phasing with long-read sequencing.

Read More »

Sunday, October 25, 2020

AGBT Conference: Long-read sequence of the gorilla genome

Christopher Hill presents data from efforts to produce reference-grade assemblies for the great ape species. Using SMRT Sequencing, Hill and his colleagues are generating assemblies with much higher contiguity to resolve repetitive and other particularly complex regions. In this talk, he focuses on data from their new high-quality gorilla assembly.

Read More »

Sunday, October 25, 2020

ASHG Virtual Poster: The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

In this ASHG 2016 poster video, Martin Pollard from the Wellcome Trust Sanger Institute and the University of Cambridge describes an ambitious project to better represent natural variation in the complex MHC region by sequencing the locus in thousands of people from various populations in Africa. A pilot project in five populations has already revealed a lot of diversity in the region, which is important for human disease, vaccine response, and organ transplantation. Pollard says SMRT Sequencing is the only technology that can deliver the full-length haplotypes necessary to identify complete variation in this highly polymorphic complex. Plus: plans to…

Read More »

Sunday, October 25, 2020

AGBT PacBio Workshop: High-throughput HLA class I whole gene and HLA class II long range typing on PacBio RSII and Sequel Platforms

In a talk at AGBT 2017, Histogenetics CEO Nezih Cereb reported on how SMRT Sequencing is allowing his team to produce full-length, phased sequences for HLA alleles, which are important for matching organ transplants to recipients. The company is typing thousands of samples per day on their PacBio RS II systems and their new Sequel System. Cereb noted that SMRT Sequencing is unique in its ability to reliably phase mutations in the HLA alleles without imputation. Cereb concluded with his plans to use this approach for other complex regions, such as KIR, and announced their continued increasing HLA typing capacity…

Read More »

Tuesday, April 21, 2020

Current advances in HIV vaccine preclinical studies using Macaque models.

The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.Crown Copyright…

Read More »

Tuesday, April 21, 2020

The major histocompatibility complex of Old World camelids: Class I and class I-related genes.

The genomic structure of the Major Histocompatibility Complex (MHC) region and variation in selected MHC class I related genes in Old World camels, Camelus bactrianus and Camelus dromedaries were studied. The overall genomic organization of the camel MHC region follows a general pattern observed in other mammalian species and individual MHC loci appear to be well conserved. Selected MHC class I genes B-67 and BL3-7 exhibited unexpectedly low variability, even when compared to other camel MHC class I related genes MR1 and MICA. Interspecific SNP and allele sharing are relatively common, and frequencies of heterozygotes are usually low. Such a…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives