fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, February 5, 2021

Tutorial: Circular Consensus Sequence analysis application [SMRT Link v5.0.0]

This tutorial provides an overview of the Circular Consensus Sequence (CCS) analysis application. The CCS algorithm is used in applications that require distinguishing closely related DNA molecules in the same sample. Applications of CCS include profiling microbial communities, resolving viral populations and accurately identifying somatic variations within heterogeneous tumor cells. This tutorial covers features of SMRT Link v5.0.0.

Read More »

Friday, February 5, 2021

User Group Meeting: Development, validation, and applications of a high-fidelity, species-specific, eubacterial pan-domain microbiome assay on the PacBio System

In this PacBio User Group Meeting presentation, Garth Ehrlich of Drexel University College of Medicine shares his work on developing a microbiome assay that uses SMRT Sequencing to provide high-quality coverage of the 16S bacterial rRNA for species identification. The microbiome analysis pipeline, MCSMRT, takes advantage of PacBio circular consensus sequencing (CCS) technology and second-generation pathway analysis system for generating extremely high-fidelity sequences that provide the user with ultra-high-confidence species-level microbiome data.

Read More »

Friday, February 5, 2021

User Group Meeting: Unbiased characterization of metagenome composition and function using HiFi sequencing on the PacBio Sequel II System

In this PacBio User Group Meeting presentation, PacBio scientist Meredith Ashby shared several examples of analysis — from full-length 16S sequencing to shotgun sequencing — showing how SMRT Sequencing enables accurate representation for metagenomics and microbiome characterization, in some cases even without fully assembling genomes. New updates will provide users with a dedicated microbial assembly pipeline, optimized for all classes of bacteria, as well as increased multiplexing on the Sequel II System, now with 48 validated barcoded adapters. That throughput could reduce the cost of microbial analysis substantially.

Read More »

Friday, February 5, 2021

Webinar: Sequence with Confidence – Introducing the Sequel II System

In this webinar, Jonas Korlach, Chief Scientific Officer, PacBio provides an overview of the features and the advantages of the new Sequel II System. Kiran Garimella, Senior Computational Scientist, Broad Institute of MIT and Harvard University, describes his work sequencing humans with HiFi reads enabling discovery of structural variants undetectable in short reads. Luke Tallon, Scientific Director, Genomics Resource Center, Institute for Genome Sciences, University of Maryland School of Medicine, covers the GRC’s work on bacterial multiplexing, 16S microbiome profiling, and shotgun metagenomics. Finally, Shane McCarthy, Senior Research Associate, University of Cambridge, focuses on the scaling and affordability of high-quality…

Read More »

Friday, February 5, 2021

Webinar: A HiFi View – Sequencing the gut microbiome with highly accurate long reads

In this webinar, Dr. Ashby gives attendees a brief update on PacBio’s metagenomics solutions on the Sequel II System. Then, Dr. Ma, University of Maryland School of Medicine, discusses her work using long read sequencing to identify high-resolution microbial biomarkers associated with leaky gut syndrome in premature infants. Finally, Dr. Weinstock, The Jackson Laboratory, talks about the potential of highly accurate long reads to enable strain-level resolution of the human gut microbiome by resolving intraspecies variation in multiple copies of the 16S gene.

Read More »

Friday, February 5, 2021

Video: Introduction to PacBio highly accurate long-read sequencing

PacBio Sequencing is powered by Single Molecule, Real-Time (SMRT) Sequencing technology. The Sequel II System offers the affordable, highly accurate long reads needed to gain comprehensive views of genomes, transcriptomes, and epigenomes. Watch this video to get to know the Sequel II System, explore the key advantages of SMRT Sequencing, and learn how its applications can be used to drive new discoveries.

Read More »

Tuesday, April 21, 2020

metaFlye: scalable long-read metagenome assembly using repeat graphs

Long-read sequencing technologies substantially improved assemblies of many isolate bacterial genomes as compared to fragmented assemblies produced with short-read technologies. However, assembling complex metagenomic datasets remains a challenge even for the state-of-the-art long-read assemblers. To address this gap, we present the metaFlye assembler and demonstrate that it generates highly contiguous and accurate metagenome assemblies. In contrast to short-read metagenomics assemblers that typically fail to reconstruct full-length 16S RNA genes, metaFlye captures many 16S RNA genes within long contigs, thus providing new opportunities for analyzing the microbial “dark matter of life”. We also demonstrate that long-read metagenome assemblers significantly improve full-length…

Read More »

Tuesday, April 21, 2020

A microbial factory for defensive kahalalides in a tripartite marine symbiosis.

Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont (“Candidatus Endobryopsis kahalalidefaciens”) uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. “Ca E. kahalalidefaciens” has lost many essential traits for free living and acts as a…

Read More »

Tuesday, April 21, 2020

Assembly of long, error-prone reads using repeat graphs.

Accurate genome assembly is hampered by repetitive regions. Although long single molecule sequencing reads are better able to resolve genomic repeats than short-read data, most long-read assembly algorithms do not provide the repeat characterization necessary for producing optimal assemblies. Here, we present Flye, a long-read assembly algorithm that generates arbitrary paths in an unknown repeat graph, called disjointigs, and constructs an accurate repeat graph from these error-riddled disjointigs. We benchmark Flye against five state-of-the-art assemblers and show that it generates better or comparable assemblies, while being an order of magnitude faster. Flye nearly doubled the contiguity of the human genome…

Read More »

Tuesday, April 21, 2020

Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota.

The human gut microbiota has adapted to the presence of antimicrobial peptides (AMPs), which are ancient components of immune defence. Despite its medical importance, it has remained unclear whether AMP resistance genes in the gut microbiome are available for genetic exchange between bacterial species. Here, we show that AMP resistance and antibiotic resistance genes differ in their mobilization patterns and functional compatibilities with new bacterial hosts. First, whereas AMP resistance genes are widespread in the gut microbiome, their rate of horizontal transfer is lower than that of antibiotic resistance genes. Second, gut microbiota culturing and functional metagenomics have revealed that…

Read More »

1 2 3 4 5 8

Subscribe for blog updates:

Archives