Menu
February 5, 2021  |  

AGBT PacBio Workshop: Full workshop recording

PacBio customers and thought leaders discuss the role SMRT sequencing is playing in comprehensive genomics: past, present, and future. Featuring J. Craig Venter, Gene Myers, Deanna Church, Jeong-Sun Seo and…


April 21, 2020  |  

SyRI: identification of syntenic and rearranged regions from whole-genome assemblies

We present SyRI, an efficient tool for genome-wide identification of structural rearrangements (SR) from genome graphs, which are built up from pair-wise whole-genome alignments. Instead of searching for differences, SyRI starts by finding all co-linear regions between the genomes. As all remaining regions are SRs by definition, they can be classified as inversions, translocations, or duplications based on their positions in convoluted networks of repetitive alignments. Finally, SyRI reports local variations like SNPs and indels within syntenic and rearranged regions. We show SyRItextquoterights broad applicability to multiple species and genetically validate the presence of ~100 translocations identified in Arabidopsis.


April 21, 2020  |  

Highly flexible infection programs in a specialized wheat pathogen.

Many filamentous plant pathogens exhibit high levels of genomic variability, yet the impact of this variation on host-pathogen interactions is largely unknown. We have addressed host specialization in the wheat pathogen Zymoseptoria tritici. Our study builds on comparative analyses of infection and gene expression phenotypes of three isolates and reveals the extent to which genomic variation translates into phenotypic variation. The isolates exhibit genetic and genomic variation but are similarly virulent. By combining confocal microscopy, disease monitoring, staining of ROS, and comparative transcriptome analyses, we conducted a detailed comparison of the infection processes of these isolates in a susceptible wheat cultivar. We characterized four core infection stages: establishment, biotrophic growth, lifestyle transition, and necrotrophic growth and asexual reproduction that are shared by the three isolates. However, we demonstrate differentiated temporal and spatial infection development and significant differences in the expression profiles of the three isolates during the infection stages. More than 20% of the genes were differentially expressed and these genes were located significantly closer to transposable elements, suggesting an impact of epigenetic regulation. Further, differentially expressed genes were enriched in effector candidates suggesting that isolate-specific strategies for manipulating host defenses are present in Z. tritici. We demonstrate that individuals of a host-specialized pathogen have highly differentiated infection programs characterized by flexible infection development and functional redundancy. This illustrates how high genetic diversity in pathogen populations results in highly differentiated infection phenotypes, which fact needs to be acknowledged to understand host-pathogen interactions and pathogen evolution.


April 21, 2020  |  

Smut infection of perennial hosts: the genome and the transcriptome of the Brassicaceae smut fungus Thecaphora thlaspeos reveal functionally conserved and novel effectors.

Biotrophic fungal plant pathogens can balance their virulence and form intricate relationships with their hosts. Sometimes, this leads to systemic host colonization over long time scales without macroscopic symptoms. However, how plant-pathogenic endophytes manage to establish their sustained systemic infection remains largely unknown. Here, we present a genomic and transcriptomic analysis of Thecaphora thlaspeos. This relative of the well studied grass smut Ustilago maydis is the only smut fungus adapted to Brassicaceae hosts. Its ability to overwinter with perennial hosts and its systemic plant infection including roots are unique characteristics among smut fungi. The T. thlaspeos genome was assembled to the chromosome level. It is a typical smut genome in terms of size and genome characteristics. In silico prediction of candidate effector genes revealed common smut effector proteins and unique members. For three candidates, we have functionally demonstrated effector activity. One of these, TtTue1, suggests a potential link to cold acclimation. On the plant side, we found evidence for a typical immune response as it is present in other infection systems, despite the absence of any macroscopic symptoms during infection. Our findings suggest that T. thlaspeos distinctly balances its virulence during biotrophic growth ultimately allowing for long-lived infection of its perennial hosts. © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.


October 23, 2019  |  

Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.

The possibility to predict the outcome of targeted DNA double-stranded break (DSB) repair would be desirable for genome editing. Furthermore the consequences of mis-repair of potentially cell-lethal DSBs and the underlying pathways are not yet fully understood. Here we study the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-induced mutation spectra at three selected endogenous loci in Arabidopsis thaliana by deep sequencing of long amplicon libraries. Notably, we found sequence-dependent genomic features that affected the DNA repair outcome. Deletions of 1-bp to <1000-bp size and/or very short insertions, deletions >1 kbp (all due to NHEJ) and deletions combined with insertions between 5-bp to >100 bp [caused by a synthesis-dependent strand annealing (SDSA)-like mechanism] occurred most frequently at all three loci. The appearance of single-stranded annealing events depends on the presence and distance between repeats flanking the DSB. The frequency and size of insertions is increased if a sequence with high similarity to the target site was available in cis. Most deletions were linked to pre-existing microhomology. Deletion and/or insertion mutations were blunt-end ligated or via de novo generated microhomology. While most mutation types and, to some degree, their predictability are comparable with animal systems, the broad range of deletion mutations seems to be a peculiar feature of the plant A. thaliana.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

The maize W22 genome provides a foundation for functional genomics and transposon biology.

The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using short-read sequencing technologies. We show that significant structural heterogeneity exists in comparison to the B73 reference genome at multiple scales, from transposon composition and copy number variation to single-nucleotide polymorphisms. The generation of this reference genome enables accurate placement of thousands of Mutator (Mu) and Dissociation (Ds) transposable element insertions for reverse and forward genetics studies. Annotation of the genome has been achieved using RNA-seq analysis, differential nuclease sensitivity profiling and bisulfite sequencing to map open reading frames, open chromatin sites and DNA methylation profiles, respectively. Collectively, the resources developed here integrate W22 as a community reference genome for functional genomics and provide a foundation for the maize pan-genome.


September 22, 2019  |  

PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes.

Background. Metagenomics is an approach for characterizing environmental microbial communities in situ, it allows their functional and taxonomic characterization and to recover sequences from uncultured taxa. This is often achieved by a combination of sequence assembly and binning, where sequences are grouped into ‘bins’ representing taxa of the underlying microbial community. Assignment to low-ranking taxonomic bins is an important challenge for binning methods as is scalability to Gb-sized datasets generated with deep sequencing techniques. One of the best available methods for species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS package, where a human expert decides on the taxa to incorporate in the model and identifies ‘training’ sequences based on marker genes directly from the sample. Due to the manual effort involved, this approach does not scale to multiple metagenome samples and requires substantial expertise, which researchers who are new to the area do not have. Results. We have developed PhyloPythiaS+, a successor to our PhyloPythia(S) software. The new (+) component performs the work previously done by the human expert. PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the simultaneous counting of 4-6-mers used for taxonomic binning 100-fold and reduced the overall execution time of the software by a factor of three. Our software allows to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+ was compared to MEGAN, taxator-tk, Kraken and the generic PhyloPythiaS model. The results showed that PhyloPythiaS+ performs especially well for samples originating from novel environments in comparison to the other methods. Availability. PhyloPythiaS+ in a virtual machine is available for installation under Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.


September 22, 2019  |  

Community profiling of Fusarium in combination with other plant associated fungi in different crop species using SMRT Sequencing.

Fusarium head blight, caused by fungi from the genus Fusarium, is one of the most harmful cereal diseases, resulting not only in severe yield losses but also in mycotoxin contaminated and health-threatening grains. Fusarium head blight is caused by a diverse set of species that have different host ranges, mycotoxin profiles and responses to agricultural practices. Thus, understanding the composition of Fusarium communities in the field is crucial for estimating their impact and also for the development of effective control measures. Up to now, most molecular tools that monitor Fusarium communities on plants are limited to certain species and do not distinguish other plant associated fungi. To close these gaps, we developed a sequencing-based community profiling methodology for crop-associated fungi with a focus on the genus Fusarium. By analyzing a 1600 bp long amplicon spanning the highly variable segments ITS and D1-D3 of the ribosomal operon by PacBio SMRT sequencing, we were able to robustly quantify Fusarium down to species level through clustering against reference sequences. The newly developed methodology was successfully validated in mock communities and provided similar results as the culture-based assessment of Fusarium communities by seed health tests in grain samples from different crop species. Finally, we exemplified the newly developed methodology in a field experiment with a wheat-maize crop sequence under different cover crop and tillage regimes. We analyzed wheat straw residues, cover crop shoots and maize grains and we could reveal that the cover crop hairy vetch (Vicia villosa) acts as a potent alternative host for Fusarium (OTU F.ave/tri) showing an eightfold higher relative abundance compared with other cover crop treatments. Moreover, as the newly developed methodology also allows to trace other crop-associated fungi, we found that vetch and green fallow hosted further fungal plant pathogens including Zymoseptoria tritici. Thus, besides their beneficial traits, cover crops can also entail phytopathological risks by acting as alternative hosts for Fusarium and other noxious plant pathogens. The newly developed sequencing based methodology is a powerful diagnostic tool to trace Fusarium in combination with other fungi associated to different crop species.


September 22, 2019  |  

cDNA library enrichment of full length transcripts for SMRT long read sequencing.

The utility of genome assemblies does not only rely on the quality of the assembled genome sequence, but also on the quality of the gene annotations. The Pacific Biosciences Iso-Seq technology is a powerful support for accurate eukaryotic gene model annotation as it allows for direct readout of full-length cDNA sequences without the need for noisy short read-based transcript assembly. We propose the implementation of the TeloPrime Full Length cDNA Amplification kit to the Pacific Biosciences Iso-Seq technology in order to enrich for genuine full-length transcripts in the cDNA libraries. We provide evidence that TeloPrime outperforms the commonly used SMARTer PCR cDNA Synthesis Kit in identifying transcription start and end sites in Arabidopsis thaliana. Furthermore, we show that TeloPrime-based Pacific Biosciences Iso-Seq can be successfully applied to the polyploid genome of bread wheat (Triticum aestivum) not only to efficiently annotate gene models, but also to identify novel transcription sites, gene homeologs, splicing isoforms and previously unidentified gene loci.


September 22, 2019  |  

Long-term microbiota and virome in a Zürich patient after fecal transplantation against Clostridium difficile infection.

Fecal microbiota transplantation (FMT) is an emerging therapeutic option for Clostridium difficile infections that are refractory to conventional treatment. FMT introduces fecal microbes into the patient’s intestine that prevent the recurrence of C. difficile, leading to rapid expansion of bacteria characteristic of healthy microbiota. However, the long-term effects of FMT remain largely unknown. The C. difficile patient described in this paper revealed protracted microbiota adaptation processes from 6 to 42 months post-FMT. Ultimately, bacterial communities were donor similar, suggesting sustainable stool engraftment. Since little is known about the consequences of transmitted viruses during C. difficile infection, we also interrogated virome changes. Our approach allowed identification of about 10 phage types per sample that represented larger viral communities, and phages were found to be equally abundant in the cured patient and donor. The healthy microbiota appears to be characterized by low phage abundance. Although viruses were likely transferred, the patient established a virome distinct from the donor. Surprisingly, the patient had sequences of algal giant viruses (chloroviruses) that have not previously been reported for the human gut. Chloroviruses have not been associated with intestinal disease, but their presence in the oropharynx may influence cognitive abilities. The findings suggest that the virome is an important indicator of health or disease. A better understanding of the role of viruses in the gut ecosystem may uncover novel microbiota-modulating therapeutic strategies.© 2016 New York Academy of Sciences.


September 22, 2019  |  

Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity.

Circular RNAs (circRNAs) have re-emerged as an interesting RNA species. Using deep RNA profiling in different mouse tissues, we observed that circRNAs were substantially enriched in brain and a disproportionate fraction of them were derived from host genes that encode synaptic proteins. Moreover, on the basis of separate profiling of the RNAs localized in neuronal cell bodies and neuropil, circRNAs were, on average, more enriched in the neuropil than their host gene mRNA isoforms. Using high-resolution in situ hybridization, we visualized circRNA punctae in the dendrites of neurons. Consistent with the idea that circRNAs might regulate synaptic function during development, many circRNAs changed their abundance abruptly at a time corresponding to synaptogenesis. In addition, following a homeostatic downscaling of neuronal activity many circRNAs exhibited substantial up- or downregulation. Together, our data indicate that brain circRNAs are positioned to respond to and regulate synaptic function.


September 22, 2019  |  

Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres.

Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.


September 22, 2019  |  

Avian transcriptomics: opportunities and challenges

Recent developments in next-generation sequencing technologies have greatly facilitated the study of whole transcriptomes in model and non-model species. Studying the transcriptome and how it changes across a variety of biological conditions has had major implications for our understanding of how the genome is regulated in different contexts, and how to interpret adaptations and the phenotype of an organism. The aim of this review is to highlight the potential of these new technologies for the study of avian transcriptomics, and to summarise how transcriptomics has been applied in ornithology. A total of 81 peer-reviewed scientific articles that used transcriptomics to answer questions within a broad range of study areas in birds are used as examples throughout the review. We further provide a quick guide to highlight the most important points which need to be take into account when planning a transcriptomic study in birds, and discuss how researchers with little background in molecular biology can avoid potential pitfalls. Suggestions for further reading are supplied throughout. We also discuss possible future developments in the technology platforms used for ribonucleic acid sequencing. By summarising how these novel technologies can be used to answer questions that have long been asked by ornithologists, we hope to bridge the gap between traditional ornithology and genomics, and to stimulate more interdisciplinary research.


September 22, 2019  |  

Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infections (RCDIs). However, long-term effects on the patients’ gut microbiota and the role of viruses remain to be elucidated. Here, we characterized bacterial and viral microbiota in the feces of a cured RCDI patient at various time points until 4.5 yr post-FMT compared with the stool donor. Feces were subjected to DNA sequencing to characterize bacteria and double-stranded DNA (dsDNA) viruses including phages. The patient’s microbial communities varied over time and showed little overall similarity to the donor until 7 mo post-FMT, indicating ongoing gut microbiota adaption in this time period. After 4.5 yr, the patient’s bacteria attained donor-like compositions at phylum, class, and order levels with similar bacterial diversity. Differences in the bacterial communities between donor and patient after 4.5 yr were seen at lower taxonomic levels. C. difficile remained undetectable throughout the entire timespan. This demonstrated sustainable donor feces engraftment and verified long-term therapeutic success of FMT on the molecular level. Full engraftment apparently required longer than previously acknowledged, suggesting the implementation of year-long patient follow-up periods into clinical practice. The identified dsDNA viruses were mainly Caudovirales phages. Unexpectedly, sequences related to giant algae–infecting Chlorella viruses were also detected. Our findings indicate that intestinal viruses may be implicated in the establishment of gut microbiota. Therefore, virome analyses should be included in gut microbiota studies to determine the roles of phages and other viruses—such as Chlorella viruses—in human health and disease, particularly during RCDI.


September 22, 2019  |  

Meeting report: 31st International Mammalian Genome Conference, Mammalian Genetics and Genomics: From Molecular Mechanisms to Translational Applications.

High on the Heidelberg hills, inside the Advanced Training Centre of the European Molecular Biology Laboratory (EMBL) campus with its unique double-helix staircase, scientists gathered for the EMBL conference “Mammalian Genetics and Genomics: From Molecular Mechanisms to Translational Applications,” organized in cooperation with the International Mammalian Genome Society (IMGS) and the Mouse Molecular Genetics (MMG) group. The conference attracted 205 participants from 30 countries, representing 6 of the 7 continents-all except Antarctica. It was a richly diverse group of geneticists, clinicians, and bioinformaticians, with presentations by established and junior investigators, including many trainees. From the 24th-27th of October 2017, they shared exciting advances in mammalian genetics and genomics research, from the introduction of cutting-edge technologies to descriptions of translational studies involving highly relevant models of human disease.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.