Menu
August 19, 2021  |  Sequencing methods

Application brief — HiFi amplicon sequencing

With PacBio® long reads you can easily and cost-effectively sequence full length amplicons that target genes or regions of interest, from several hundred base pairs to kilobase scale. Highly accurate…


June 1, 2021  |  

A novel analytical pipeline for de novo haplotype phasing and amplicon analysis using SMRT Sequencing technology.

While the identification of individual SNPs has been readily available for some time, the ability to accurately phase SNPs and structural variation across a haplotype has been a challenge. With individual reads of an average length of 9 kb (P5-C3), and individual reads beyond 30 kb in length, SMRT Sequencing technology allows the identification of mutation combinations such as microdeletions, insertions, and substitutions without any predetermined reference sequence. Long- amplicon analysis is a novel protocol that identifies and reports the abundance of differing clusters of sequencing reads within a single library. Graphs generated via hierarchical clustering of individual sequencing reads are used to generate Markov models representing the consensus sequence of individual clusters found to be significantly different. Long-amplicon analysis is capable of differentiating between underlying sequences that are 99.9% similar, which is suitable for haplotyping and differentiating pseudogenes from coding transcripts. This protocol allows for the identification of structural variation in the MUC5AC gene sequence, despite the presence of a gap in the current genome assembly, and can also be used for HLA haplotyping. Clustering can also been applied to identify full length transcripts for the purpose of estimating consensus sequences and enumerating isoform types. Long-amplicon analysis allows for the elucidation of complex regions otherwise missed by other sequencing technologies, which may contribute to the diagnosis and understanding of otherwise complex diseases.


June 1, 2021  |  

Long Amplicon Analysis: Highly accurate, full-length, phased, allele-resolved gene sequences from multiplexed SMRT Sequencing data.

The correct phasing of genetic variations is a key challenge for many applications of DNA sequencing. Allele-level resolution is strongly preferred for histocompatibility sequencing where recombined genes can exhibit different compatibilities than their parents. In other contexts, gene complementation can provide protection if deleterious mutations are found on only one allele of a gene. These problems are especially pronounced in immunological domains given the high levels of genetic diversity and recombination seen in regions like the Major Histocompatibility Complex. A new tool for analyzing Single Molecule, Real-Time (SMRT) Sequencing data – Long Amplicon Analysis (LAA) – can generate highly accurate, phased and full-length consensus sequences for multiple genes in a single sequencing run.


June 1, 2021  |  

Mitochondrial DNA sequencing using PacBio SMRT technology

Mitochondrial DNA (mtDNA) is a compact, double-stranded circular genome of 16,569 bp with a cytosine-rich light (L) chain and a guanine-rich heavy (H) chain. mtDNA mutations have been increasingly recognized as important contributors to an array of human diseases such as Parkinson’s disease, Alzheimer’s disease, colorectal cancer and Kearns–Sayre syndrome. mtDNA mutations can affect all of the 1000-10,000 copies of the mitochondrial genome present in a cell (homoplasmic mutation) or only a subset of copies (heteroplasmic mutation). The ratio of normal to mutant mtDNAs within cells is a significant factor in whether mutations will result in disease, as well as the clinical presentation, penetrance, and severity of the phenotype. Over time, heteroplasmic mutations can become homoplastic due to differential replication and random assortment. Full characterization of the mitochondrial genome would involve detection of not only homoplastic but heteroplasmic mutations, as well as complete phasing. Previously, we sequenced human mtDNA on the PacBio RS II System with two partially overlapping amplicons. Here, we present amplification-free, full-length sequencing of linearized mtDNA using the Sequel System. Full-length sequencing allows variant phasing along the entire mitochondrial genome, identification of heteroplasmic variants, and detection of epigenetic modifications that are lost in amplicon-based methods.


June 1, 2021  |  

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The Circular Consensus Sequencing (CCS) analysis pipeline produces QV 30 data from each single intra-molecular multi-pass polymerase read, making it a reliable solution for detecting minor variant alleles with frequencies as low as 1 %. Long Amplicon Analysis (LAA) makes use of insert spanning full-length subreads originating from multiple individual copies of the target to generate highly accurate and phased consensus sequences (>QV50), offering a unique advantage for imputation free allele segregation and haplotype phasing. Here we present workflows and results for a range of SMRT Sequencing clinical applications. Specifically, we illustrate how the flexible multiplexing options, simple sample preparation methods and new developments in data analysis tools offered by PacBio in support of Sequel System 5.1 can come together in a variety of experimental designs to enable applications as diverse as high throughput HLA typing, mitochondrial DNA sequencing and viral vector integrity profiling of recombinant adeno-associated viral genomes (rAAV).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.