Zero-mode waveguides (ZMWs) are photonic nanostructures that create highly confined optical observation volumes, thereby allowing single-molecule-resolved biophysical studies at relatively high concentrations of fluorescent molecules. This principle has been successfully applied in single-molecule, real-time (SMRT®) DNA sequencing for the detection of DNA sequences and DNA base modifications. In contrast, RNA sequencing methods cannot provide sequence and RNA base modifications concurrently as they rely on complementary DNA (cDNA) synthesis by reverse transcription followed by sequencing of cDNA. Thus, information on RNA modifications is lost during the process of cDNA synthesis.Here we describe an application of SMRT technology to follow the activity…
We describe the direct detection of DNA methylation, without bisulfite conversion, through single-molecule, real-time (SMRT) sequencing. In SMRT sequencing, DNA polymerases catalyze the incorporation of fluorescently labeled nucleotides into complementary nucleic acid strands. The arrival times and durations of the resulting fluorescence pulses yield information about polymerase kinetics and allow direct detection of modified nucleotides in the DNA template, including N6-methyladenine, 5-methylcytosine and 5-hydroxymethylcytosine. Measurement of polymerase kinetics is an intrinsic part of SMRT sequencing and does not adversely affect determination of primary DNA sequence. The various modifications affect polymerase kinetics differently, allowing discrimination between them. We used these kinetic…
Current generation DNA sequencing instruments are moving closer to seamlessly sequencing genomes of entire populations as a routine part of scientific investigation. However, while significant inroads have been made identifying small nucleotide variation and structural variations in DNA that impact phenotypes of interest, progress has not been as dramatic regarding epigenetic changes and base-level damage to DNA, largely due to technological limitations in assaying all known and unknown types of modifications at genome scale. Recently, single-molecule real time (SMRT) sequencing has been reported to identify kinetic variation (KV) events that have been demonstrated to reflect epigenetic changes of every known…
Pacific Biosciences has developed a method for real-time sequencing of single DNA molecules (Eid et al., 2009), with intrinsic sequencing rates of several bases per second and read lengths into the kilobase range. Conceptually, this sequencing approach is based on eavesdropping on the activity of DNA polymerase carrying out template-directed DNA polymerization. Performed in a highly parallel operational mode, sequential base additions catalyzed by each polymerase are detected with terminal phosphate-linked, fluorescence-labeled nucleotides. This chapter will first outline the principle of this single-molecule, real-time (SMRT) DNA sequencing method, followed by descriptions of its underlying components and typical sequencing run conditions.…
DNA modifications such as methylation and DNA damage can play critical regulatory roles in biological systems. Single molecule, real time (SMRT) sequencing technology generates DNA sequences as well as DNA polymerase kinetic information that can be used for the direct detection of DNA modifications. We demonstrate that local sequence context has a strong impact on DNA polymerase kinetics in the neighborhood of the incorporation site during the DNA synthesis reaction, allowing for the possibility of estimating the expected kinetic rate of the enzyme at the incorporation site using kinetic rate information collected from existing SMRT sequencing data (historical data) covering…
BackgroundPausing of DNA polymerase can indicate the presence of a DNA structure that differs from the canonical double-helix. Here we detail a method to investigate how polymerase pausing in the Pacific Biosciences sequencer reads can be related to DNA sequences. The Pacific Biosciences sequencer uses optics to view a polymerase and its interaction with a single DNA molecule in real-time, offering a unique way to detect potential alternative DNA structures.ResultsWe have developed a new way to examine polymerase kinetics data and relate it to the DNA sequence by using a wavelet transform of read information from the sequencer. We use…
DNA methylation serves as an important epigenetic mark in both eukaryotic and prokaryotic organisms. In eukaryotes, the most common epigenetic mark is 5-methylcytosine, whereas prokaryotes can have 6-methyladenine, 4-methylcytosine, or 5-methylcytosine. Single-molecule, real-time sequencing is capable of directly detecting all three types of modified bases. However, the kinetic signature of 5-methylcytosine is subtle, which presents a challenge for detection. We investigated whether conversion of 5-methylcytosine to 5-carboxylcytosine using the enzyme Tet1 would enhance the kinetic signature, thereby improving detection.We characterized the kinetic signatures of various cytosine modifications, demonstrating that 5-carboxylcytosine has a larger impact on the local polymerase rate than…
We demonstrate the efficient synthesis of DNA with complete replacement of the four deoxyribonucleoside triphosphate (dNTP) substrates with nucleotides carrying fluorescent labels. A different, spectrally separable fluorescent dye suitable for single molecule fluorescence detection was conjugated to each of the four dNTPs via linkage to the terminal phosphate. Using these modified nucleotides, DNA synthesis by phi 29 DNA polymerase was observed to be processive for products thousands of bases in length, with labeled nucleotide affinities and DNA polymerization rates approaching unmodified dNTP levels. Results presented here show the compatibility of these nucleotides for single-molecule, real-time DNA sequencing applications.