Menu
July 7, 2019  |  

Analysis of resistance genes of clinical Pannonibacter phragmitetus strain 31801 by complete genome sequencing.

To clarify the resistance mechanisms of Pannonibacter phragmitetus 31801, isolated from the blood of a liver abscess patient, at the genomic level, we performed whole genomic sequencing using a PacBio RS II single-molecule real-time long-read sequencer. Bioinformatic analysis of the resulting sequence was then carried out to identify any possible resistance genes. Analyses included Basic Local Alignment Search Tool searches against the Antibiotic Resistance Genes Database, ResFinder analysis of the genome sequence, and Resistance Gene Identifier analysis within the Comprehensive Antibiotic Resistance Database. Prophages, clustered regularly interspaced short palindromic repeats (CRISPR), and other putative virulence factors were also identified using PHAST, CRISPRfinder, and the Virulence Factors Database, respectively. The circular chromosome and single plasmid of P. phragmitetus 31801 contained multiple antibiotic resistance genes, including those coding for three different types of ß-lactamase [NPS ß-lactamase (EC 3.5.2.6), ß-lactamase class C, and a metal-dependent hydrolase of ß-lactamase superfamily I]. In addition, genes coding for subunits of several multidrug-resistance efflux pumps were identified, including those targeting macrolides (adeJ, cmeB), tetracycline (acrB, adeAB), fluoroquinolones (acrF, ceoB), and aminoglycosides (acrD, amrB, ceoB, mexY, smeB). However, apart from the tripartite macrolide efflux pump macAB-tolC, the genome did not appear to contain the complete complement of subunit genes required for production of most of the major multidrug-resistance efflux pumps.


July 7, 2019  |  

Complete genome sequence of oyster isolate Vibrio vulnificus env1.

Vibrio vulnificus, a ubiquitous inhabitant of coastal marine environments, has been isolated from a variety of sources. It is an opportunistic pathogen of both marine animals and humans. Here, the genome sequence of V. vulnificus Env1, an environmental isolate resistant to predation by the ciliate Tetrahymena pyriformis, is reported. Copyright © 2018 Noorian et al.


July 7, 2019  |  

Complete genome sequence of Achromobacter spanius type strain DSM 23806T, a pathogen isolated from human blood.

Achromobacter spanius is a newly described, non-fermenting, Gram-negative, coccoid pathogen isolated from human blood. Whole-genome sequencing of the A. spanius type strain was performed to investigate the mechanism of pathogenesis of this strain at a genomic level.The complete genome of A. spanius type strain DSM 23806T was sequenced using single-molecule real-time (SMRT) DNA sequencing.The complete genome of DSM 23806T consists of one circular DNA chromosome of 6425783bp with a G+C content of 64.26%. The entire genome contains 5804 predicted coding sequences (CDS) and 55 tRNAs. Genomic island (GI) analysis showed that this strain encodes several important pathogenesis- and resistance-related genes.These results strongly suggest that GIs provide some fitness advantages in A. spanius type strain DSM 23806T. This report provides an extensive understanding of A. spanius at a genomic level as well as an understanding of the evolution of A. spanius. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

First description of novel arginine catabolic mobile elements (ACMEs) types IV and V harboring a kdp operon in Staphylococcus epidermidis characterized by whole genome sequencing.

The arginine catabolic mobile element (ACME) was first described in the methicillin-resistant Staphylococcus aureus strain USA300 and is thought to facilitate survival on skin. To date three distinct ACME types have been characterized comprehensively in S. aureus and/or Staphylococcus epidermidis. Type I harbors the arc and opp3 operons encoding an arginine deaminase pathway and an oligopeptide permease ABC transporter, respectively, type II harbors the arc operon only, and type III harbors the opp3 operon only. To investigate the diversity and detailed genetic organization of ACME, whole genome sequencing (WGS) was performed on 32 ACME-harboring oro-nasal S. epidermidis isolates using MiSeq- and PacBio-based WGS platforms. In nine isolates the ACMEs lacked the opp3 operon, but harbored a complete kdp operon (kdpE/D/A/B/C) located a maximum of 2.8?kb upstream of the arc operon. The kdp operon exhibited 63% DNA sequence identity to the native S. aureus kdp operon. These findings identified a novel, previously undescribed ACME type (designated ACME IV), which could be subtyped (IVa and IVb) based on distinct 5′ flanking direct repeat sequences (DRs). Multilocus sequence typing (MLST) sequences extracted from the WGS data identified the sequence types (STs) of the isolates investigated. Four of the nine ACME IV isolates belonged to ST153, and one to ST17, a single locus variant of ST153. A tenth isolate, identified as ST5, harbored another novel ACME type (designated ACME V) containing the kdp, arc and opp3 operons and flanked by DR_F, and DR_B but lacked any internal DRs. ACME V was colocated with a staphylococcal chromosome cassette mec (SCCmec) IV element and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in a 116.9?kb composite island. The extensive genetic diversity of ACME in S. epidermidis has been further elucidated by WGS, revealing two novel ACME types IV and V for the first time. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequences of Canadian epidemic methicillin-resistant Staphylococcus aureus strains CMRSA3 and CMRSA6.

Methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 8 (CC8) sequence type 239 (ST239) represents a predominant hospital-associated MRSA sublineage present worldwide. The Canadian epidemic MRSA strains CMRSA3 and CMRSA6 are moderately virulent members of this group but are closely related to the highly virulent strain TW20. Whole-genome sequencing of CMRSA3 and CMRSA6 was conducted to identify genetic determinants associated with their virulence.


July 7, 2019  |  

Complete genome sequence of Pseudomonas aeruginosa K34-7, a carbapenem-resistant isolate of the high-risk sequence type 233.

Carbapenem-resistant Pseudomonas aeruginosa is defined as a textquotedblleftcriticaltextquotedblright priority pathogen for the development of new antibiotics. Here we report the complete genome sequence of an extensively drug-resistant, Verona integron-encoded metallo-ß-lactamase-expressing isolate belonging to the high-risk sequence type 233.


July 7, 2019  |  

Complete genome sequence of Aeromonas rivipollensis KN-Mc-11N1, isolated from a wild nutria (Myocastor coypus) in South Korea.

We report here the complete genome sequence of Aeromonas rivipollensis KN-Mc-11N1, which was isolated from a wild nutria (Myocastor coypus) in South Korea. Genomic analysis indicated that A. rivipollensis may have zoonotic potential similar to that of other aeromonads, and nutria could be one of the sources of transmission of zoonotic pathogens to humans.


July 7, 2019  |  

Complete genome sequence of a Staphylococcus aureus sequence type 612 isolate from an Australian horse.

Staphylococcus aureus is a serious pathogen of humans and animals. Multilocus sequence type 612 is dominant and highly virulent in South African hospitals but relatively uncommon elsewhere. We present the complete genome sequence of methicillin-resistant Staphylococcus aureus strain SVH7513, isolated from a horse at a veterinary clinic in New South Wales, Australia.


July 7, 2019  |  

Transposon insertion sequencing elucidates novel gene involvement in susceptibility and resistance to phages T4 and T7 in Escherichia coli O157.

Experiments using bacteriophage (phage) to infect bacterial strains have helped define some basic genetic concepts in microbiology, but our understanding of the complexity of bacterium-phage interactions is still limited. As the global threat of antibiotic resistance continues to increase, phage therapy has reemerged as an attractive alternative or supplement to treating antibiotic-resistant bacterial infections. Further, the long-used method of phage typing to classify bacterial strains is being replaced by molecular genetic techniques. Thus, there is a growing need for a complete understanding of the precise molecular mechanisms underpinning phage-bacterium interactions to optimize phage therapy for the clinic as well as for retrospectively interpreting phage typing data on the molecular level. In this study, a genomics-based fitness assay (TraDIS) was used to identify all host genes involved in phage susceptibility and resistance for a T4 phage infecting Shiga-toxigenic Escherichia coli O157. The TraDIS results identified both established and previously unidentified genes involved in phage infection, and a subset were confirmed by site-directed mutagenesis and phenotypic testing of 14 T4 and 2 T7 phages. For the first time, the entire sap operon was implicated in phage susceptibility and, conversely, the stringent starvation protein A gene (sspA) was shown to provide phage resistance. Identifying genes involved in phage infection and replication should facilitate the selection of bespoke phage combinations to target specific bacterial pathogens.IMPORTANCE Antibiotic resistance has diminished treatment options for many common bacterial infections. Phage therapy is an alternative option that was once popularly used across Europe to kill bacteria within humans. Phage therapy acts by using highly specific viruses (called phages) that infect and lyse certain bacterial species to treat the infection. Whole-genome sequencing has allowed modernization of the investigations into phage-bacterium interactions. Here, using E. coli O157 and T4 bacteriophage as a model, we have exploited a genome-wide fitness assay to investigate all genes involved in defining phage resistance or susceptibility. This knowledge of the genetic determinants of phage resistance and susceptibility can be used to design bespoke phage combinations targeted to specific bacterial infections for successful infection eradication. Copyright © 2018 Cowley et al.


July 7, 2019  |  

Low-level antimicrobials in the medicinal leech select for resistant pathogens that spread to patients.

Fluoroquinolones (FQs) and ciprofloxacin (Cp) are important antimicrobials that pollute the environment in trace amounts. Although Cp has been recommended as prophylaxis for patients undergoing leech therapy to prevent infections by the leech gut symbiont Aeromonas, a puzzling rise in Cp-resistant (Cpr) Aeromonas infections has been reported. We report on the effects of subtherapeutic FQ concentrations on bacteria in an environmental reservoir, the medicinal leech, and describe the presence of multiple antibiotic resistance mutations and a gain-of-function resistance gene. We link the rise of CprAeromonas isolates to exposure of the leech microbiota to very low levels of Cp (0.01 to 0.04 µg/ml), <1/100 of the clinical resistance breakpoint for Aeromonas Using competition experiments and comparative genomics of 37 strains, we determined the mechanisms of resistance in clinical and leech-derived Aeromonas isolates, traced their origin, and determined that the presence of merely 0.01 µg/ml Cp provides a strong competitive advantage for Cpr strains. Deep-sequencing the Cpr-conferring region of gyrA enabled tracing of the mutation-harboring Aeromonas population in archived gut samples, and an increase in the frequency of the Cpr-conferring mutation in 2011 coincides with the initial reports of CprAeromonas infections in patients receiving leech therapy.IMPORTANCE The role of subtherapeutic antimicrobial contamination in selecting for resistant strains has received increasing attention and is an important clinical matter. This study describes the relationship of resistant bacteria from the medicinal leech, Hirudo verbana, with patient infections following leech therapy. While our results highlight the need for alternative antibiotic therapies, the rise of Cpr bacteria demonstrates the importance of restricting the exposure of animals to antibiotics approved for veterinary use. The shift to a more resistant community and the dispersion of Cpr-conferring mechanisms via mobile elements occurred in a natural setting due to the presence of very low levels of fluoroquinolones, revealing the challenges of controlling the spread of antibiotic-resistant bacteria and highlighting the importance of a holistic approach in the management of antibiotic use. Copyright © 2018 Beka et al.


July 7, 2019  |  

Closed complete genome sequences of two nontypeable Haemophilus influenzae strains containing novel modA alleles from the sputum of patients with chronic obstructive pulmonary disease.

Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease (COPD). Here, we report the complete genome sequences of NTHi strains 10P129H1 and 84P36H1, isolated from COPD patients, which contain the phase-variable epigenetic regulators ModA15 and ModA18, respectively.


July 7, 2019  |  

Evolution and comparative genomics of F33:A-:B- plasmids carrying blaCTX-M-55 or blaCTX-M-65 in Escherichia coli and Klebsiella pneumoniae isolated from animals.

To understand the underlying evolution process of F33:A-:B- plasmids among Enterobacteriaceae isolates of various origins in China, the complete sequences of 17 blaCTX-M-harboring F33:A-:B- plasmids obtained from Escherichia coli and Klebsiella pneumoniae isolates from different sources (animals, animal-derived food, and human clinics) in China were determined. F33:A-:B- plasmids shared similar plasmid backbones comprising replication, leading, and conjugative transfer regions and differed by the numbers of repeats in yddA and traD and by the presence of group II intron, except that pHNAH9 lacked a large segment of the leading and transfer regions. The variable regions of F33:A-B- plasmids were distinct and were inserted downstream of the addiction system pemI/pemK, identified as the integration hot spot among F33:A-B- plasmids. The variable region contained resistance genes and mobile elements or contained segments from other types of plasmids, such as IncI1, IncN1, and IncX1. Three plasmids encoding CTX-M-65 were very similar to our previously described pHN7A8 plasmid. Four CTX-M-55-producing plasmids contained multidrug resistance regions related to that of F2:A-B- plasmid pHK23a from Hong Kong. Five plasmids with IncN and/or IncX replication regions and IncI1-backbone fragments had variable regions related to those of pE80 and p42-2. The remaining five plasmids with IncN replicons and an IncI1 segment also possessed closely related variable regions. The diversity in variable regions was presumably associated with rearrangements, insertions, and/or deletions mediated by mobile elements, such as IS26 and IS1294 IMPORTANCE Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A-:B- plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A-:B- plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A-:B- plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes. Copyright © 2018 Wang et al.


July 7, 2019  |  

Closed genome sequence of Clostridium botulinum strain CFSAN064329 (62A).

Clostridium botulinum is a strictly anaerobic, Gram-positive, spore-forming bacterium that produces botulinum neurotoxin, a potent and deadly proteinaceous exotoxin. Clostridium botulinum strain CFSAN064329 (62A) produces an A1 serotype/subtype botulinum neurotoxin and is frequently utilized in food challenge and detection studies. We report here the closed genome sequence of Clostridium botulinum strain CFSAN064329 (62A).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.