Menu
July 7, 2019  |  

The odyssey of the ancestral Escherich strain through culture collections: an example of allopatric diversification.

More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli, one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding generpoS. These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations inrpoSand efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution ofE. coliof Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.


July 7, 2019  |  

Complete genome sequence of uropathogenic Escherichia coli isolate UPEC 26-1.

Urinary tract infections (UTIs) are among the most common infections in humans, predominantly caused by uropathogenic Escherichia coli (UPEC). The diverse genomes of UPEC strains mostly impede disease prevention and control measures. In this study, we comparatively analyzed the whole genome sequence of a highly virulent UPEC strain, namely UPEC 26-1, which was isolated from urine sample of a patient suffering from UTI in Korea. Whole genome analysis showed that the genome consists of one circular chromosome of 5,329,753 bp, comprising 5064 protein-coding genes, 122 RNA genes (94 tRNA, 22 rRNA and 6 ncRNA genes), and 100 pseudogenes, with an average G+C content of 50.56%. In addition, we identified 8 prophage regions comprising 5 intact, 2 incomplete and 1 questionable ones and 63 genomic islands, suggesting the possibility of horizontal gene transfer in this strain. Comparative genome analysis of UPEC 26-1 with the UPEC strain CFT073 revealed an average nucleotide identity of 99.7%. The genome comparison with CFT073 provides major differences in the genome of UPEC 26-1 that would explain its increased virulence and biofilm formation. Nineteen of the total GIs were unique to UPEC 26-1 compared to CFT073 and nine of them harbored unique genes that are involved in virulence, multidrug resistance, biofilm formation and bacterial pathogenesis. The data from this study will assist in future studies of UPEC strains to develop effective control measures.


July 7, 2019  |  

Complete genome sequence of the marine Rhodococcus sp. H-CA8f isolated from Comau fjord in Northern Patagonia, Chile

Rhodococcus sp. H-CA8f was isolated from marine sediments obtained from the Comau fjord, located in Northern Chilean Patagonia. Whole-genome sequencing was achieved using PacBio RS II platform, comprising one closed, complete chromosome of 6,19?Mbp with a 62.45% G?+?C content. The chromosome harbours several metabolic pathways providing a wide catabolic potential, where the upper biphenyl route is described. Also, Rhodococcus sp. H-CA8f bears one linear mega-plasmid of 301?Kbp and 62.34% of G?+?C content, where genomic analyses demonstrated that it is constituted mostly by putative ORFs with unknown functions, representing a novel genetic feature. These genetic characteristics provide relevant insights regarding Chilean marine actinobacterial strains.


July 7, 2019  |  

PlasmidTron: assembling the cause of phenotypes and genotypes from NGS data.

Increasingly rich metadata are now being linked to samples that have been whole-genome sequenced. However, much of this information is ignored. This is because linking this metadata to genes, or regions of the genome, usually relies on knowing the gene sequence(s) responsible for the particular trait being measured and looking for its presence or absence in that genome. Examples of this would be the spread of antimicrobial resistance genes carried on mobile genetic elements (MGEs). However, although it is possible to routinely identify the resistance gene, identifying the unknown MGE upon which it is carried can be much more difficult if the starting point is short-read whole-genome sequence data. The reason for this is that MGEs are often full of repeats and so assemble poorly, leading to fragmented consensus sequences. Since mobile DNA, which can carry many clinically and ecologically important genes, has a different evolutionary history from the host, its distribution across the host population will, by definition, be independent of the host phylogeny. It is possible to use this phenomenon in a genome-wide association study to identify both the genes associated with the specific trait and also the DNA linked to that gene, for example the flanking sequence of the plasmid vector on which it is encoded, which follows the same patterns of distribution as the marker gene/sequence itself. We present PlasmidTron, which utilizes the phenotypic data normally available in bacterial population studies, such as antibiograms, virulence factors, or geographical information, to identify traits that are likely to be present on DNA that can randomly reassort across defined bacterial populations. It is also possible to use this methodology to associate unknown genes/sequences (e.g. plasmid backbones) with a specific molecular signature or marker (e.g. resistance gene presence or absence) using PlasmidTron. PlasmidTron uses a k-mer-based approach to identify reads associated with a phylogenetically unlinked phenotype. These reads are then assembled de novo to produce contigs in a fast and scalable-to-large manner. PlasmidTron is written in Python 3 and is available under the open source licence GNU GPL3 from https://github.com/sanger-pathogens/plasmidtron.


July 7, 2019  |  

Complete genome sequence of a VIM-1- producing Salmonella enterica subsp. enterica serovar Infantis isolate derived from minced pork meat.

Carbapenems are considered last-resort antibiotics used to treat human infections caused by multidrug-resistant bacteria. In 2011, VIM-1 carbapenemase-producing Salmonella enterica subsp. enterica serovar Infantis strains were isolated from livestock for the first time in Germany. Here, we announce the complete genome sequence of the first German blaVIM-1-harboring Salmonella Infantis isolate (15-SA01028) originating from food. Copyright © 2018 Borowiak et al.


July 7, 2019  |  

Molecular preadaptation to antimony resistance in Leishmania donovani on the Indian subcontinent.

Antimonials (Sb) were used for decades for chemotherapy of visceral leishmaniasis (VL). Now abandoned in the Indian subcontinent (ISC) because of Leishmania donovani resistance, this drug offers a unique model for understanding drug resistance dynamics. In a previous phylogenomic study, we found two distinct populations of L. donovani: the core group (CG) in the Gangetic plains and ISC1 in the Nepalese highlands. Sb resistance was only encountered within the CG, and a series of potential markers were identified. Here, we analyzed the development of resistance to trivalent antimonials (SbIII) upon experimental selection in ISC1 and CG strains. We observed that (i) baseline SbIII susceptibility of parasites was higher in ISC1 than in the CG, (ii) time to SbIII resistance was higher for ISC1 parasites than for CG strains, and (iii) untargeted genomic and metabolomic analyses revealed molecular changes along the selection process: these were more numerous in ISC1 than in the CG. Altogether these observations led to the hypothesis that CG parasites are preadapted to SbIII resistance. This hypothesis was experimentally confirmed by showing that only wild-type CG strains could survive a direct exposure to the maximal concentration of SbIII The main driver of this preadaptation was shown to be MRPA, a gene involved in SbIII sequestration and amplified in an intrachromosomal amplicon in all CG strains characterized so far. This amplicon emerged around 1850 in the CG, well before the implementation of antimonials for VL chemotherapy, and we discuss here several hypotheses of selective pressure that could have accompanied its emergence.IMPORTANCE The “antibiotic resistance crisis” is a major challenge for scientists and medical professionals. This steady rise in drug-resistant pathogens also extends to parasitic diseases, with antimony being the first anti-Leishmania drug that fell in the Indian subcontinent (ISC). Leishmaniasis is a major but neglected infectious disease with limited therapeutic options. Therefore, understanding how parasites became resistant to antimonials is of commanding importance. In this study, we experimentally characterized the dynamics of this resistance acquisition and show for the first time that some Leishmania populations of the ISC were preadapted to antimony resistance, likely driven by environmental factors or by drugs used in the 19th century. Copyright © 2018 Dumetz et al.


July 7, 2019  |  

Complete genome sequence of a ciprofloxacin-resistant Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 strain, PU131, isolated from a human patient in Washington State.

Strains of the ciprofloxacin-resistant (Cipr) Salmonella enterica subsp. enterica serovar Kentucky sequence type 198 (ST198) have rapidly and extensively disseminated globally to become a major food safety and public health concern. Here, we report the complete genome sequence of a CiprS. Kentucky ST198 strain, PU131, isolated from a human patient in Washington State (USA).


July 7, 2019  |  

Whole-genome sequence of phage-resistant strain Escherichia coli DH5a.

The genomes of many strains of Escherichia coli have been sequenced, as this organism is a classic model bacterium. Here, we report the genome sequence of Escherichia coli DH5a, which is resistant to a T4 bacteriophage (CCTCC AB 2015375), while its other homologous E. coli strains, such as E. coli BL21, DH10B, and MG1655, are not resistant to phage invasions. Thus, understanding of the genome of the DH5a strain, along with comparative analysis of its genome sequence along with other sequences of E. coli strains, may help to reveal the bacteriophage resistance mechanism of E. coli. Copyright © 2018 Chen et al.


July 7, 2019  |  

Complete genome sequence of Escherichia albertii strain 1551-2, a potential extracellular and intracellular pathogen.

Escherichia albertii has recently been recognized as an emerging human and bird enteric pathogen. Here, we report the complete chromosome sequence of a clinical isolate of E. albertii strain 1551-2, which may provide information about the pathogenic potential of this new species and the mechanisms of evolution of Escherichia species. Copyright © 2018 Romão et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.