X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Detection of complex structural variation from paired-end sequencing data

Detecting structural variants (SVs) from sequencing data is a key problem in genome analysis, but the full diversity of SVs is not captured by most methods. We introduce the Automated Reconstruction of Complex Structural Variants (ARC-SV) method, which detects a broad class of structural variants from paired-end whole genome sequencing (WGS) data. Analysis of samples from NA12878 and HuRef suggests that complex SVs are often misclassified by traditional methods. We validated our results both experimentally and by comparison to whole genome assembly and PacBio data; ARC-SV compares favorably to existing algorithms in general and gives state-of-the-art results on complex SV…

Read More »

Sunday, July 7, 2019

SV2: Accurate structural variation genotyping and de novo mutation detection from whole genomes.

Structural Variation (SV) detection from short-read whole genome sequencing is error prone, presenting significant challenges for population or family-based studies of disease.Here we describe SV2, a machine-learning algorithm for genotyping deletions and duplications from paired-end sequencing data. SV2 can rapidly integrate variant calls from multiple structural variant discovery algorithms into a unified call set with high genotyping accuracy and capability to detect de novo mutations. SV2 is freely available on GitHub (https://github.com/dantaki/SV2).Supplementary data are available at Bioinformatics online.© The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Read More »

Sunday, July 7, 2019

Ultraaccurate genome sequencing and haplotyping of single human cells.

Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands…

Read More »

Sunday, July 7, 2019

A recurrence-based approach for validating structural variation using long-read sequencing technology.

Although numerous algorithms have been developed to identify structural variations (SVs) in genomic sequences, there is a dearth of approaches that can be used to evaluate their results. This is significant as the accurate identification of structural variation is still an outstanding but important problem in genomics. The emergence of new sequencing technologies that generate longer sequence reads can, in theory, provide direct evidence for all types of SVs regardless of the length of the region through which it spans. However, current efforts to use these data in this manner require the use of large computational resources to assemble these…

Read More »

Sunday, July 7, 2019

The state of whole-genome sequencing

Over the last decade, a technological paradigm shift has slashed the cost of DNA sequencing by over five orders of magnitude. Today, the cost of sequencing a human genome is a few thousand dollars, and it continues to fall. Here, we review the most cost-effective platforms for whole-genome sequencing (WGS) as well as emerging technologies that may displace or complement these. We also discuss the practical challenges of generating and analyzing WGS data, and how WGS has unlocked new strategies for discovering genes and variants underlying both rare and common human diseases.

Read More »

Sunday, July 7, 2019

An ethnically relevant consensus Korean reference genome is a step towards personal reference genomes.

Human genomes are routinely compared against a universal reference. However, this strategy could miss population-specific and personal genomic variations, which may be detected more efficiently using an ethnically relevant or personal reference. Here we report a hybrid assembly of a Korean reference genome (KOREF) for constructing personal and ethnic references by combining sequencing and mapping methods. We also build its consensus variome reference, providing information on millions of variants from 40 additional ethnically homogeneous genomes from the Korean Personal Genome Project. We find that the ethnically relevant consensus reference can be beneficial for efficient variant detection. Systematic comparison of human…

Read More »

Sunday, July 7, 2019

svclassify: a method to establish benchmark structural variant calls.

The human genome contains variants ranging in size from small single nucleotide polymorphisms (SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations from one or more aligned bam files…

Read More »

Sunday, July 7, 2019

A comprehensive model of DNA fragmentation for the preservation of High Molecular Weight DNA

During DNA extraction the DNA molecule undergoes physical and chemical shearing, causing the DNA to fragment into shorter and shorter pieces. Under common laboratory conditions this fragmentation yields DNA fragments of 5-35 kilobases (kb) in length. This fragment length is more than sufficient for DNA sequencing using short-read technologies which generate reads 50-600 bp in length, but insufficient for long-read sequencing and linked reads where fragment lengths of more than 40 kb may be desirable. This study provides a theoretical framework for quality management to ensure access to high molecular weight DNA in samples. Shearing can be divided into physical…

Read More »

Sunday, July 7, 2019

scanPAV: a pipeline for extracting presence-absence variations in genome pairs.

The recent technological advances in genome sequencing techniques have resulted in an exponential increase in the number of sequenced human and non-human genomes. The ever increasing number of assemblies generated by novel de novo pipelines and strategies demands the development of new software to evaluate assembly quality and completeness. One way to determine the completeness of an assembly is by detecting its Presence-Absence variations (PAV) with respect to a reference, where PAVs between two assemblies are defined as the sequences present in one assembly but entirely missing in the other one. Beyond assembly error or technology bias, PAVs can also…

Read More »

Sunday, July 7, 2019

FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods.

Comprehensive and accurate identification of structural variations (SVs) from next generation sequencing data remains a major challenge. We develop FusorSV, which uses a data mining approach to assess performance and merge callsets from an ensemble of SV-calling algorithms. It includes a fusion model built using analysis of 27 deep-coverage human genomes from the 1000 Genomes Project. We identify 843 novel SV calls that were not reported by the 1000 Genomes Project for these 27 samples. Experimental validation of a subset of these calls yields a validation rate of 86.7%. FusorSV is available at https://github.com/TheJacksonLaboratory/SVE .

Read More »

Sunday, July 7, 2019

ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.

The long-range sequencing information captured by linked reads, such as those available from 10× Genomics (10xG), helps resolve genome sequence repeats, and yields accurate and contiguous draft genome assemblies. We introduce ARKS, an alignment-free linked read genome scaffolding methodology that uses linked reads to organize genome assemblies further into contiguous drafts. Our approach departs from other read alignment-dependent linked read scaffolders, including our own (ARCS), and uses a kmer-based mapping approach. The kmer mapping strategy has several advantages over read alignment methods, including better usability and faster processing, as it precludes the need for input sequence formatting and draft sequence…

Read More »

Sunday, July 7, 2019

GtTR: Bayesian estimation of absolute tandem repeat copy number using sequence capture and high throughput sequencing.

Tandem repeats comprise significant proportion of the human genome including coding and regulatory regions. They are highly prone to repeat number variation and nucleotide mutation due to their repetitive and unstable nature, making them a major source of genomic variation between individuals. Despite recent advances in high throughput sequencing, analysis of tandem repeats in the context of complex diseases is still hindered by technical limitations. We report a novel targeted sequencing approach, which allows simultaneous analysis of hundreds of repeats. We developed a Bayesian algorithm, namely – GtTR – which combines information from a reference long-read dataset with a short…

Read More »

Sunday, July 7, 2019

Meeting report: mobile genetic elements and genome plasticity 2018

The Mobile Genetic Elements and Genome Plasticity conference was hosted by Keystone Symposia in Santa Fe, NM USA, February 11–15, 2018. The organizers were Marlene Belfort, Evan Eichler, Henry Levin and Lynn Maquat. The goal of this conference was to bring together scientists from around the world to discuss the function of transposable elements and their impact on host species. Central themes of the meeting included recent innovations in genome analysis and the role of mobile DNA in disease and evolution. The conference included 200 scientists who participated in poster presentations, short talks selected from abstracts, and invited talks. A…

Read More »

Sunday, July 7, 2019

iMGEins: detecting novel mobile genetic elements inserted in individual genomes.

Recent advances in sequencing technology have allowed us to investigate personal genomes to find structural variations, which have been studied extensively to identify their association with the physiology of diseases such as cancer. In particular, mobile genetic elements (MGEs) are one of the major constituents of the human genomes, and cause genome instability by insertion, mutation, and rearrangement.We have developed a new program, iMGEins, to identify such novel MGEs by using sequencing reads of individual genomes, and to explore the breakpoints with the supporting reads and MGEs detected. iMGEins is the first MGE detection program that integrates three algorithmic components:…

Read More »

1 6 7 8

Subscribe for blog updates:

Archives