September 22, 2019  |  

Diverse antibiotic resistance genes in dairy cow manure.

Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.


September 22, 2019  |  

Complete genome sequences of two human oral microbiome commensals, Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945.

Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K(-)/K(+) strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae. Copyright © 2017 Butler et al.


September 22, 2019  |  

Stalking a lethal superbug by whole-genome sequencing and phylogenetics: Influence on unraveling a major hospital outbreak of carbapenem-resistant Klebsiella pneumoniae.

From July 2010-April 2013, Leipzig University Hospital experienced the largest outbreak of a Klebsiella pneumoniae carbapenemase 2 (KPC-2)-producing Klebsiella pneumoniae (KPC-2-Kp) strain observed in Germany to date. After termination of the outbreak, we aimed to reconstruct transmission pathways by phylogenetics based on whole-genome sequencing (WGS).One hundred seventeen KPC-2-Kp isolates from 89 outbreak patients, 5 environmental KPC-2-Kp isolates, and 24 K pneumoniae strains not linked to the outbreak underwent WGS. Phylogenetic analysis was performed blinded to clinical data and based on the genomic reads.A patient from Greece was confirmed as the source of the outbreak. Transmission pathways for 11 out of 89 patients (12.4%) were plausibly explained by descriptive epidemiology, applying strict definitions. Five of these and an additional 15 (ie, 20 out of 89 patients [22.5%]) were confirmed by phylogenetics. The rate of phylogenetically confirmed transmissions increased significantly from 8 out of 66 (12.1% for the time period before) to 12 out of 23 patients (52.2% for the time period after; P?<.001) after implementation of systematic screening for KPC-2-Kp (33,623 screening investigations within 11 months). Using descriptive epidemiology, systematic screening showed no significant effect (7 out of 66 [10.6%] vs 4 out of 23 [17.4%] patients; P?=?.465). The phylogenetic analysis supported the assumption that a contaminated positioning pillow served as a reservoir for the persistence of KPC-2-Kp.Effective phylogenetic identification of transmissions requires systematic microbiologic screening. Extensive screening and phylogenetic analysis based on WGS should be started as soon as possible in a bacterial outbreak situation. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Revisiting the contribution of gene duplication of blaOXA-23 in carbapenem-resistant Acinetobacter baumannii.

Gene duplication has been discovered for many antimicrobial resistance genes in bacterial genomes and has been considered a source of elevated antimicrobial resistance.1 The gene blaOXA-23is a major determinant in the emergence of carbapenem-resistant Acinetobacter baumannii (CRAB).2–4 We have previously reported the widespread duplication of blaOXA-23by surveying 113 clinical CRAB isolates in China.5 However, in these isolates the blaOXA-23 copy number did not correlate well with the MIC of imipenem. A similar phenomenon was also reported recently by Yoon et al.6 One reasonable explanation is that, in addition to gene duplica- tions, other mechanisms might also impact on the MIC, such as the presence of specific outer membrane proteins and/ortheover-expression of resistance–nodulation–division (RND)-type efflux pumps.7 Often, these mechanisms might vary in their performance when in different genomic contexts. Instead of making comparisons between clinical isolates, in this study we cultured A. baumannii under treatment with carbapenem, thus avoiding any interference induced in different genomic contexts. If an increase in the blaOXA-23 copy number or MIC were to occur within the same strain, the contribution of gene duplication to carbapenem resistance would be acknowledged.


September 22, 2019  |  

Extensively drug-resistant Escherichia coli sequence type 1642 carrying an IncX3 plasmid containing the blaKPC-2 gene associated with transposon Tn4401a.

Extensively drug-resistant (XDR) Enterobacteriaceae carrying the bla(KPC) gene have emerged as a major global therapeutic concern. The purpose of this study was to analyze the complete sequences of plasmids from KPC-2 carbapenemase-producing XDR Escherichia coli sequence type (ST) 1642 isolates.We performed antimicrobial susceptibility testing, PCR, multilocus sequence typing (MLST), and whole-genome sequencing to characterize the plasmid-mediated KPC-2-producing E. coli clinical isolates.The isolates were resistant to most available antibiotics, including meropenem, ampicillin, ceftriaxone, gentamicin, and ciprofloxacin, but susceptible to tigecycline and colistin. The isolates were identified as the rare ST1642 by MLST. The isolates carried four plasmids: the first 69-kb conjugative IncX3 plasmid harbors bla(KPC-2) within a truncated Tn4401a transposon and bla(SHV-11) with duplicated conjugative elements. The second 142-kb plasmid with a multireplicon consisting of IncQ, IncFIA, and IncIB carries bla(TEM-1b) and two class 1 integrons. This plasmid also harbors a wide variety of additional antimicrobial resistance genes including aadA5, dfrA17, mph(A), sul1, tet(B), aac(3′)-IId, strA, strB, and sul2.The complete sequence analysis of plasmids from an XDR E. coli strain related to persistent infection showed the coexistence of a bla(KPC-2)-carrying IncX3-type plasmid and a class 1 integron-harboring multireplicon, suggesting its potential to cause outbreaks. Of additional clinical significance, the rare ST1642, identified in a cat, could constitute the source of human infection.


September 22, 2019  |  

Screening and genomic characterization of filamentous hemagglutinin-deficient Bordetella pertussis.

Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus.

Mutations in the beta-subunit of bacterial RNA polymerase (RpoB) cause resistance to rifampin (Rifr), a critical antibiotic for treatment of multidrug-resistantStaphylococcus aureus.In vitrostudies have shown that RpoB mutations confer decreased susceptibility to other antibiotics, but the clinical relevance is unknown. Here, by analyzing 7,099S. aureusgenomes, we demonstrate that the most prevalent RpoB mutations promote clinically relevant phenotypic plasticity resulting in the emergence of stableS. aureuslineages, associated with increased risk of therapeutic failure through generation of small-colony variants (SCVs) and coresistance to last-line antimicrobial agents. We found eight RpoB mutations that accounted for 93% (469/505) of the total number of Rifrmutations. The most frequently selected amino acid substitutions affecting residue 481 (H481N/Y) were associated with worldwide expansions of Rifrclones spanning decades. Recreating the H481N/Y mutations confirmed no impact onS. aureusgrowth, but the H481N mutation promoted the emergence of a subpopulation of stable RifrSCVs with reduced susceptibility to vancomycin and daptomycin. Recreating the other frequent RpoB mutations showed similar impacts on resistance to these last-line agents. We found that 86% of all Rifrisolates in our global sample carried the mutations promoting cross-resistance to vancomycin and 52% to both vancomycin and daptomycin. As four of the most frequent RpoB mutations confer only low-level Rifr, equal to or below some international breakpoints, we recommend decreasing these breakpoints and reconsidering the appropriate use of rifampin to reduce the fixation and spread of these clinically deleterious mutations. IMPORTANCE Increasing antibiotic resistance in the major human pathogenStaphylococcus aureusis threatening the ability to treat patients with these infections. Recent laboratory studies suggest that mutations in the gene commonly associated with rifampin resistance may also impact susceptibility to other last-line antibiotics inS. aureus; however, the overall frequency and clinical impact of these mutations are unknown. By mining a global collection of clinicalS. aureusgenomes and by mutagenesis experiments, this work reveals that common rifampin-inducedrpoBmutations promote phenotypic plasticity that has led to the global emergence of stable, multidrug-resistantS. aureuslineages that are associated with increased risk of therapeutic failure through coresistance to other last-line antimicrobials. We recommend decreasing susceptibility breakpoints for rifampin to allow phenotypic detection of criticalrpoBmutations conferring low resistance to rifampin and reconsidering the appropriate use of rifampin to reduce the fixation and spread of these deleterious mutations globally.


September 22, 2019  |  

In situ analyses directly in diarrheal stool reveal large variations in bacterial load and active toxin expression of enterotoxigenic Escherichia coli and Vibrio cholerae.

The bacterial pathogens enterotoxigenicEscherichia coli(ETEC) andVibrio choleraeare major causes of diarrhea. ETEC causes diarrhea by production of the heat-labile toxin (LT) and heat-stable toxins (STh and STp), whileV. choleraeproduces cholera toxin (CT). In this study, we determined the occurrence and bacterial doses of the two pathogens and their respective toxin expression levels directly in liquid diarrheal stools of patients in Dhaka, Bangladesh. By quantitative culture and real-time quantitative PCR (qPCR) detection of the toxin genes, the two pathogens were found to coexist in several of the patients, at concentrations between 102and 108bacterial gene copies per ml. Even in culture-negative samples, gene copy numbers of 102to 104of either ETEC orV. choleraetoxin genes were detected by qPCR. RNA was extracted directly from stool, and gene expression levels, quantified by reverse transcriptase qPCR (RT-qPCR), of the genes encoding CT, LT, STh, and STp showed expression of toxin genes. Toxin enzyme-linked immunosorbent assay (ELISA) confirmed active toxin secretion directly in the liquid diarrhea. Analysis of ETEC isolates by multiplex PCR, dot blot analysis, and genome sequencing suggested that there are genetic ETEC profiles that are more commonly found as dominating single pathogens and others that are coinfectants with lower bacterial loads. The ETEC genomes, including assembled genomes of dominating ETEC isolates expressing LT/STh/CS5/CS6 and LT/CS7, are provided. In addition, this study highlights an emerging important ETEC strain expressing LT/STp and the novel colonization factor CS27b. These findings have implications for investigations of pathogenesis as well as for vaccine development. IMPORTANCEThe cause of diarrheal disease is usually determined by screening for several microorganisms by various methods, and sole detection is used to assign the agent as the cause of disease. However, it has become increasingly clear that many infections are caused by coinfections with several pathogens and that the dose of the infecting pathogen is important. We quantified the absolute numbers of enterotoxigenicE. coli(ETEC) andVibrio choleraedirectly in diarrheal fluid. We noted several events where both pathogens were found but also a large dose dependency. In three samples, we found ETEC as the only pathogen sought for. These isolates belonged to globally distributed ETEC clones and were the dominating species in stool with active toxin expression. This suggests that certain superior virulent ETEC lineages are able to outcompete the gut microbiota and be the sole cause of disease and hence need to be specifically monitored.


September 22, 2019  |  

The putative functions of lysogeny in mediating the survivorship of Escherichia coli in seawater and marine sediment.

Escherichia coli colonizes various body parts of animal hosts as a commensal and a pathogen. It can also persist in the external environment in the absence of fecal pollution. It remains unclear how this species has evolved to adapt to such contrasting habitats. Lysogeny plays pivotal roles in the diversification of the phenotypic and ecologic characters of E. coli as a symbiont. We hypothesized that lysogeny could also confer fitness to survival in the external environment. To test this hypothesis, we used the induced phages of an E. coli strain originating from marine sediment to infect a fecal E. coli strain to obtain an isogenic lysogen of the latter. The three strains were tested for survivorship in microcosms of seawater, marine sediment and sediment interstitial water as well as swimming motility, glycogen accumulation, biofilm formation, substrate utilization and stress resistance. The results indicate that lysogenic infection led to tractable changes in many of the ecophysiological attributes tested. Particularly, the lysogen had better survivorship in the microcosms and had a substrate utilization profile resembling the sediment strain more than the wild type fecal strain. Our findings provide new insights into the understanding of how E. coli survives in the natural environment.© FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 22, 2019  |  

Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli.

Adherent-invasive Escherichia coli (AIEC) have been involved in Crohn’s disease (CD). Currently, AIEC are identified by time-consuming techniques based on in vitro infection of cell lines to determine their ability to adhere to and invade intestinal epithelial cells as well as to survive and replicate within macrophages. Our aim was to find signature sequences that can be used to identify the AIEC pathotype. Comparative genomics was performed between three E. coli strain pairs, each pair comprised one AIEC and one non-AIEC with identical pulsotype, sequence type and virulence gene carriage. Genetic differences were further analysed in 22 AIEC and 28 non-AIEC isolated from CD patients and controls. The strain pairs showed similar genome structures, and no gene was specific to AIEC. Three single nucleotide polymorphisms displayed different nucleotide distributions between AIEC and non-AIEC, and four correlated with increased adhesion and/or invasion indices. Here, we present a classification algorithm based on the identification of three allelic variants that can predict the AIEC phenotype with 84% accuracy. Our study corroborates the absence of an AIEC-specific genetic marker distributed across all AIEC strains. Nonetheless, point mutations putatively involved in the AIEC phenotype can be used for the molecular identification of the AIEC pathotype.


September 22, 2019  |  

Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype Typhimurium in the late 1950s: a retrospective, whole-genome sequencing study.

Ampicillin, the first semi-synthetic penicillin active against Enterobacteriaceae, was released onto the market in 1961. The first outbreaks of disease caused by ampicillin-resistant strains of Salmonella enterica serotype Typhimurium were identified in the UK in 1962 and 1964. We aimed to date the emergence of this resistance in historical isolates of S enterica serotype Typhimurium.In this retrospective, whole-genome sequencing study, we analysed 288 S enterica serotype Typhimurium isolates collected between 1911 and 1969 from 31 countries on four continents and from various sources including human beings, animals, feed, and food. All isolates were tested for antimicrobial drug susceptibility with the disc diffusion method, and isolates shown to be resistant to ampicillin underwent resistance-transfer experiments. To provide insights into population structure and mechanisms of ampicillin resistance, we did whole-genome sequencing on a subset of 225 isolates, selected to maximise source, spatiotemporal, and genetic diversity.11 (4%) of 288 isolates were resistant to ampicillin because of acquisition of various ß lactamase genes, including blaTEM-1, carried by various plasmids, including the virulence plasmid of S enterica serotype Typhimurium. These 11 isolates were from three phylogenomic groups. One isolate producing TEM-1 ß lactamase was isolated in France in 1959 and two isolates producing TEM-1 ß lactamase were isolated in Tunisia in 1960, before ampicillin went on sale. The vectors for ampicillin resistance were different from those reported in the strains responsible for the outbreaks in the UK in the 1960s.The association between antibiotic use and selection of resistance determinants is not as direct as often presumed. Our results suggest that the non-clinical use of narrow-spectrum penicillins (eg, benzylpenicillin) might have favoured the diffusion of plasmids carrying the blaTEM-1gene in S enterica serotype Typhimurium in the late 1950s.Institut Pasteur, Santé publique France, the French Government’s Investissement d’Avenir programme, the Fondation Le Roch-Les Mousquetaires. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus.

During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by ß-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne ß-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of ß-lactams as a main therapeutic application against staphylococcal infections.


September 22, 2019  |  

Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance.

With multi-drug and pan-drug-resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach.


September 22, 2019  |  

Genetic separation of Listeria monocytogenes causing central nervous system infections in animals.

Listeria monocytogenes is a foodborne pathogen that causes abortion, septicemia, gastroenteritis and central nervous system (CNS) infections in ruminants and humans. L. monocytogenes strains mainly belong to two distinct phylogenetic groups, named lineages I and II. In general, clinical cases in humans and animals, in particular CNS infections, are caused by lineage I strains, while most of the environmental and food strains belong to lineage II. Little is known about why lineage I is more virulent than lineage II, even though various molecular factors and mechanisms associated with pathogenesis are known. In this study, we have used a variety of whole genome sequence analyses and comparative genomic tools in order to find characteristics that distinguish lineage I from lineage II strains and CNS infection strains from non-CNS strains. We analyzed 225 strains and identified single nucleotide variants between lineages I and II, as well as differences in the gene content. Using a novel approach based on Reads Per Kilobase per Million Mapped (RPKM), we identified 167 genes predominantly absent in lineage II but present in lineage I. These genes are mostly encoding for membrane-associated proteins. Additionally, we found 77 genes that are largely absent in the non-CNS associated strains, while 39 genes are especially lacking in our defined “non-clinical” group. Based on the RPKM analysis and the metadata linked to the L. monocytogenes strains, we identified 6 genes potentially associated with CNS cases, which include a transcriptional regulator, an ABC transporter and a non-coding RNA. Although there is not a clear separation between pathogenic and non-pathogenic strains based on phylogenetic lineages, the presence of the genes identified in our study reveals potential pathogenesis traits in ruminant L. monocytogenes strains. Ultimately, the differences that we have found in our study will help steer future studies in understanding the virulence mechanisms of the most pathogenic L. monocytogenes strains.


September 22, 2019  |  

Multidrug-resistant Escherichia albertii: Co-occurrence of ß-lactamase and MCR-1 encoding genes.

Escherichia albertii is an emerging member of the Enterobacteriaceae causing human and animal enteric infections. Antimicrobial resistance among enteropathogens has been reported to be increasing in the past years. The purpose of this study was to investigate antibiotic resistance and resistance genes in E. albertii isolated from Zigong city, Sichuan province, China. The susceptibility to 21 antimicrobial agents was determined by Kirby-Bauer disk diffusion method. The highest prevalence was tetracycline resistance with a rate of 62.7%, followed by resistance to nalidixic acid and streptomycin with a rate of 56.9 and 51.0%, respectively. All isolates were sensitive or intermediate susceptible to imipenem, meropenem, amoxicillin-clavulanic acid, and levofloxacin. Among 51 E. albertii isolates, 15 were extended-spectrum ß-lactamase-producing as confirmed by the double disk test. The main ß-lactamase gene groups, i.e., blaTEM, blaSHV, and blaCTX-M, were detected in17, 20, and 22 isolates, respectively. Furthermore, four colistin-resistant isolates with minimum inhibitory concentrations of 8 mg/L were identified. The colistin-resistant isolates all harbored mcr-1 and blaCTX-M-55. Genome sequencing showed that E. albertii strain SP140150 carried mcr-1 and blaCTX-M-55 in two different plasmids. This study provided significant information regarding antibiotic resistance profiles and identified the co-occurrence of ß-lactamase and MCR-1 encoding genes in E. albertii isolates.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.