Helicobacter pylori is remarkable for its genetic variation. Yet little isknown about its genetic changes during early stages of human infection, as the bacteria adapt to their new environment. We analyzed genome and methylome variations in a fully virulent strain of H pylori strain during experimental infection.We performed a randomized Phase 1 and 2, observer-blind, placebo-controlled, study of 12 healthy, H pylori-negative adults in Germany from October 2008 through March 2010. The volunteers were given a prophylactic vaccine candidate (n=7) or placebo (n=5) and then challenged with H pylori strain BCM-300. Biopsy samples were collected and H pylori were isolated.…
Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new ß-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the…
Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4…
The Helicobacter pylori phase variable gene modH, typified by gene HP1522 in strain 26695, encodes a N6-adenosine type III DNA methyltransferase. Our previous studies identified multiple strain-specific modH variants (modH1 – modH19) and showed that phase variation of modH5 in H. pylori P12 influenced expression of motility-associated genes and outer membrane protein gene hopG. However, the ModH5 DNA recognition motif and the mechanism by which ModH5 controls gene expression were unknown. Here, using comparative single molecule real-time sequencing, we identify the DNA site methylated by ModH5 as 5′-Gm6ACC-3′. This motif is vastly underrepresented in H. pylori genomes, but overrepresented in…
The development of high-throughput whole genome sequencing (WGS) technologies is changing the face of microbiology, facilitating the comparison of large numbers of genomes from different lineages of a same organism. Our aim was to review the main advances on Helicobacter pylori “omics” and to understand how this is improving our knowledge of the biology, diversity and pathogenesis of H. pylori. Since the first H. pylori isolate was sequenced in 1997, 510 genomes have been deposited in the NCBI archive, providing a basis for improved understanding of the epidemiology and evolution of this important pathogen. This review focuses on works published between April…