We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72°C, Geobacillus LC300 has a growth rate of 2.15h(-1) on glucose and 1.52h(-1) on xylose (doubling time less than 30min). The corresponding specific glucose and xylose utilization rates are 5.55g/g/h and 5.24g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of…
Thermophilic Geobacillus thermoglucosidasius could ferment a wide range of substrates with low nutrient requirements for growth. Here, the first released the complete genome sequence of G. thermoglucosidasius DSM2542 may facilitate the design of rational strategies for further strain improvements and provide information for exploring industrially interesting enzymes with thermotolerant properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Denitrification is a crucial process for the global nitrogen cycle through the reduction of nitrates by heterotrophic bacteria. Denitrifying microorganisms play an important role in eliminating fixed nitrogen pollutants from the ecosystem, concomitant with N2O emission. Although many microbial denitrifiers have been identified, little is known about the denitrifying ability of the genus Geobacillus. Here, we report the first complete genome sequences of Geobacillus subterraneus KCTC 3922(T), isolated from Liaohe oil field in China, and G. thermodenitrificans KCTC 3902(T). The strain KCTC 3922(T) contains a complete set of genes involved in denitrification, cofactor biogenesis, and transport systems, which is consistent…
This paper reports the full genome sequence of the antimicrobial-producing bacterium Geobacillus stearothermophilus DSM 458, isolated in a sugar beet factory in Austria. In silico analysis reveals the presence of a number of novel bacteriocin biosynthetic genes. Copyright © 2017 Egan et al.
Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G?+?C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate…
Here, we report the complete genome sequence of Geobacillus sp. JS12, isolated from composts located in Namhae, Korea, which shows extracellular lipolytic activities at high temperatures. An array of genes related to the utilization of lipids was identified by whole genome analysis. The genome sequence of the strain JS12 provides basic information for wider exploitation of thermostable industrial lipases. Copyright © 2016 Elsevier B.V. All rights reserved.