July 7, 2019  |  

Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72°C, Geobacillus LC300 has a growth rate of 2.15h(-1) on glucose and 1.52h(-1) on xylose (doubling time less than 30min). The corresponding specific glucose and xylose utilization rates are 5.55g/g/h and 5.24g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of Geobacillus LC300 its genome was sequenced using PacBio?s RS II single-molecule real-time (SMRT) sequencing platform and annotated using the RAST server. Based on the genome annotation and the measured biomass composition a core metabolic network model was constructed. To further demonstrate the biotechnological potential of this organism, Geobacillus LC300 was grown to high cell-densities in a fed-batch culture, where cells maintained a high xylose utilization rate under low dissolved oxygen concentrations. All of these characteristics make Geobacillus LC300 an attractive host for future metabolic engineering and biotechnology applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

July 7, 2019  |  

Genome sequence of Geobacillus thermoglucosidasius DSM2542, a platform hosts for biotechnological applications with industrial potential.

Thermophilic Geobacillus thermoglucosidasius could ferment a wide range of substrates with low nutrient requirements for growth. Here, the first released the complete genome sequence of G. thermoglucosidasius DSM2542 may facilitate the design of rational strategies for further strain improvements and provide information for exploring industrially interesting enzymes with thermotolerant properties. Copyright © 2015 Elsevier B.V. All rights reserved.

July 7, 2019  |  

Complete genome sequence of the thermophilic bacterium Geobacillus subterraneus KCTC 3922(T) as a potential denitrifier.

Denitrification is a crucial process for the global nitrogen cycle through the reduction of nitrates by heterotrophic bacteria. Denitrifying microorganisms play an important role in eliminating fixed nitrogen pollutants from the ecosystem, concomitant with N2O emission. Although many microbial denitrifiers have been identified, little is known about the denitrifying ability of the genus Geobacillus. Here, we report the first complete genome sequences of Geobacillus subterraneus KCTC 3922(T), isolated from Liaohe oil field in China, and G. thermodenitrificans KCTC 3902(T). The strain KCTC 3922(T) contains a complete set of genes involved in denitrification, cofactor biogenesis, and transport systems, which is consistent with a denitrifying activity. On the other hand, G. thermodenitrificans KCTC 3902(T) exhibited no denitrifying activity probably due to the lack of molybdnumtransferase (moeA) and nitrite transporter (nirC) genes. Therefore, comparative genome analysis of Geobacillus strains highlights the potential impact on treatment of nitrate-contaminated environments. Copyright © 2017 Elsevier B.V. All rights reserved.

July 7, 2019  |  

Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site.

Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G?+?C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 °C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential.

July 7, 2019  |  

Complete genome sequence of the crude oil-degrading thermophilic bacterium Geobacillus sp. JS12.

Here, we report the complete genome sequence of Geobacillus sp. JS12, isolated from composts located in Namhae, Korea, which shows extracellular lipolytic activities at high temperatures. An array of genes related to the utilization of lipids was identified by whole genome analysis. The genome sequence of the strain JS12 provides basic information for wider exploitation of thermostable industrial lipases. Copyright © 2016 Elsevier B.V. All rights reserved.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.