Arabica coffee, revered for its taste and aroma, has a complex genome. It is an allotetraploid (2n=4x=44) with a genome size of approximately 1.3 Gb, derived from the recent (< 0.6 Mya) hybridization of two diploid progenitors (2n=2x=22), C. canephora (710 Mb) and C. eugenioides (670 Mb). Both parental species diverged recently (< 4.2Mya) and their genomes are highly homologous. To facilitate assembly, a dihaploid plant was chosen for sequencing. Initial genome assembly attempts with short read data produced an assembly covering 1,031 Mb of the C. arabica genome with a contig L50 of 9kb. By implementation of long read…
Human Embryonic Stem Cells (hESCs) are in vitro derivatives of the inner cell mass of the blastocyst and are characterized by an undifferentiated and pluripotent state that can be perpetuated in time, indefinitely. hESCs provide a unique opportunity to both dissect the molecular mechanisms that are predisposed to the maintenance of pluripotency and model the ability to initiate differentiation and cell commitment within the developing embryo. To fully understand these mechanisms, it is necessary to accurately identify the specific transcriptome of hESCs. Many distinct gene annotation methods, such as cDNA and EST sequencing and RNA-Seq, have been used to identify…
We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of…
High-throughput transcriptome sequencing (RNA-seq) technology promises to discover novel protein-coding and non-coding transcripts, particularly the identification of long non-coding RNAs (lncRNAs) from de novo sequencing data. This requires tools that are not restricted by prior gene annotations, genomic sequences and high-quality sequencing.We present an alignment-free tool called PLEK (predictor of long non-coding RNAs and messenger RNAs based on an improved k-mer scheme), which uses a computational pipeline based on an improved k-mer scheme and a support vector machine (SVM) algorithm to distinguish lncRNAs from messenger RNAs (mRNAs), in the absence of genomic sequences or annotations. The performance of PLEK was…
Fungi grow within their food, externally digesting it and absorbing nutrients across a semirigid chitinous cell wall. Members of the new phylum Cryptomycota were proposed to represent intermediate fungal forms, lacking a chitinous cell wall during feeding and known almost exclusively from ubiquitous environmental ribosomal RNA sequences that cluster at the base of the fungal tree [1, 2]. Here, we sequence the first Cryptomycotan genome (the water mold endoparasite Rozella allomycis) and unite the Cryptomycota with another group of endoparasites, the microsporidia, based on phylogenomics and shared genomic traits. We propose that Cryptomycota and microsporidia share a common endoparasitic ancestor,…
Programmed DNA rearrangements in the single-celled eukaryote Oxytricha trifallax completely rewire its germline into a somatic nucleus during development. This elaborate, RNA-mediated pathway eliminates noncoding DNA sequences that interrupt gene loci and reorganizes the remaining fragments by inversions and permutations to produce functional genes. Here, we report the Oxytricha germline genome and compare it to the somatic genome to present a global view of its massive scale of genome rearrangements. The remarkably encrypted genome architecture contains >3,500 scrambled genes, as well as >800 predicted germline-limited genes expressed, and some posttranslationally modified, during genome rearrangements. Gene segments for different somatic loci…
We report the first complete genome sequence of Pandoraea sp. strain RB-44, which was found to possess quorum-sensing properties. To the best of our knowledge, this is the first documentation of both a complete genome sequence and quorum-sensing properties of a Pandoraea species.
Pandoraea pnomenusa strain 3kgm has been identified as a quorum-sensing strain isolated from soil. Here, we report the complete genome sequence of P. pnomenusa strain 3kgm by using the Pacific Biosciences single-molecule real-time (PacBio RS SMRT) sequencer high-resolution technology.
Bacteria belonging to the phylum Gemmatimonadetes are found in a wide variety of environments and are particularly abundant in soils. Here, we present the complete genome sequence and methylation pattern of the newly described Gemmatirosa kalamazoonensis type strain.
The first genome of one species of the Scedosporium apiospermum complex, responsible for localized to severe disseminated infections according to the immune status of the host, will contribute to a better understanding of the pathogenicity of these fungi and also to the discovery of the mechanisms underlying their low susceptibility to current antifungals. Copyright © 2014 Vandeputte et al.
High-quality draft genome sequences were determined for 10 Exiguobacterium strains in order to provide insight into their evolutionary strategies for speciation and environmental adaptation. The selected genomes include psychrotrophic and thermophilic species from a range of habitats, which will allow for a comparison of metabolic pathways and stress response genes. Copyright © 2014 Vishnivetskaya et al.
The study of whole-genome sequences has become essential for almost all branches of biological research. Next-generation sequencing (NGS) has revolutionized the scalability, speed, and resolution of sequencing and brought genomic science within reach of academic laboratories that study non-model organisms. Here, we show that a high-quality draft genome of a eukaryote can be obtained at relatively low cost by exploiting a hybrid combination of sequencing strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vibrio navarrensis is an aquatic bacterium recently shown to be associated with human illness. We report the first genome sequences of three V. navarrensis strains obtained from clinical and environmental sources. Preliminary analyses of the sequences reveal that V. navarrensis contains genes commonly associated with virulence in other human pathogens. Copyright © 2014 Gladney et al.
We report here the genome sequence of Borrelia garinii strain 935T isolated from Ixodes persulcatus in South Korea. The 1,176,739 bp (G+C content, 27.73%) genome consists of 1,194 coding regions, 4 rRNA genes, and 33 aminoacyl-tRNA synthetase genes. This is the first whole-genome report of a Korean Borrelia species isolate. Copyright © 2014 Noh et al.
Serratia sp. strain FGI 94 was isolated from a fungus garden of the leaf-cutter ant Atta colombica. Analysis of its 4.86-Mbp chromosome will help advance our knowledge of symbiotic interactions and plant biomass degradation in this ancient ant-fungus mutualism.