Menu
July 7, 2019  |  

Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea

Abstract Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.


July 7, 2019  |  

Complete genome sequence of Pseudomonas brassicacearum LBUM300, a disease-suppressive bacterium with antagonistic activity toward fungal, oomycete, and bacterial plant pathogens.

Pseudomonas brassicacearum LBUM300, a plant rhizosphere-inhabiting bacterium, produces 2,4-diacetylphloroglucinol and hydrogen cyanide and has shown antagonistic activity against the plant pathogens Verticillium dahliae, Phytophthora cactorum, and Clavibacter michiganensis subsp. michiganensis. Here, we report the complete genome sequence of P. brassicacearum LBUM300. Copyright © 2016 Novinscak et al.


July 7, 2019  |  

Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium.

Pseudomonas azotoformans is a Gram-negative bacterium and infects cereal grains, especially rice. P. azotoformans S4 from soil sample derived from Lijiang, Yunnan Province, China, appeared to be strong inhibitory activity against Fusarium fujikurio, a serious rice fungal pathogen. Here, we present the complete genome of P. azotoformans S4, which consists of 6,859,618bp with a circle chromosome, 5991 coding DNA sequences, 70 tRNA and 19 rRNA. The genomic analysis revealed that 9 candidate gene clusters are involved in the biosynthesis of secondary metabolites. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

A pigeonpea gene confers resistance to Asian soybean rust in soybean.

Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is one of the most economically important crop diseases, but is only treatable with fungicides, which are becoming less effective owing to the emergence of fungicide resistance. There are no commercial soybean cultivars with durable resistance to P. pachyrhizi, and although soybean resistance loci have been mapped, no resistance genes have been cloned. We report the cloning of a P. pachyrhizi resistance gene CcRpp1 (Cajanus cajan Resistance against Phakopsora pachyrhizi 1) from pigeonpea (Cajanus cajan) and show that CcRpp1 confers full resistance to P. pachyrhizi in soybean. Our findings show that legume species related to soybean such as pigeonpea, cowpea, common bean and others could provide a valuable and diverse pool of resistance traits for crop improvement.


July 7, 2019  |  

Direct repeat-mediated DNA deletion of the mating type MAT1-2 genes results in unidirectional mating type switching in Sclerotinia trifoliorum.

The necrotrophic fungal pathogen Sclerotinia trifoliorum exhibits ascospore dimorphism and unidirectional mating type switching – self-fertile strains derived from large ascospores produce both self-fertile (large-spores) and self-sterile (small-spores) offsprings in a 4:4 ratio. The present study, comparing DNA sequences at MAT locus of both self-fertile and self-sterile strains, found four mating type genes (MAT1-1-1, MAT1-1-5, MAT1-2-1 and MAT1-2-4) in the self-fertile strain. However, a 2891-bp region including the entire MAT1-2-1 and MAT1-2-4 genes had been completely deleted from the MAT locus in the self-sterile strain. Meanwhile, two copies of a 146-bp direct repeat motif flanking the deleted region were found in the self-fertile strain, but only one copy of this 146-bp motif (a part of the MAT1-1-1 gene) was present in the self-sterile strain. The two direct repeats were believed to be responsible for the deletion through homologous intra-molecular recombination in meiosis. Tetrad analyses showed that all small ascospore-derived strains lacked the missing DNA between the two direct repeats that was found in all large ascospore-derived strains. In addition, heterokaryons at the MAT locus were observed in field isolates as well as in laboratory derived isolates.


July 7, 2019  |  

Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen.

Genomic plasticity enables adaptation to changing environments, which is especially relevant for pathogens that engage in “arms races” with their hosts. In many pathogens, genes mediating virulence cluster in highly variable, transposon-rich, physically distinct genomic compartments. However, understanding of the evolution of these compartments, and the role of transposons therein, remains limited. Here, we show that transposons are the major driving force for adaptive genome evolution in the fungal plant pathogen Verticillium dahliae We show that highly variable lineage-specific (LS) regions evolved by genomic rearrangements that are mediated by erroneous double-strand repair, often utilizing transposons. We furthermore show that recent genetic duplications are enhanced in LS regions, against an older episode of duplication events. Finally, LS regions are enriched in active transposons, which contribute to local genome plasticity. Thus, we provide evidence for genome shaping by transposons, both in an active and passive manner, which impacts the evolution of pathogen virulence. © 2016 Faino et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Complete genome sequences of the Serratia plymuthica strains 3Rp8 and 3Re4-18, two rhizosphere bacteria with antagonistic activity towards fungal phytopathogens and plant growth promoting abilities.

The Serratia plymuthica strains 3Rp8 and 3Re4-18 are motile, Gram-negative, non-sporulating bacteria. Strain 3Rp8 was isolated from the rhizosphere of Brassica napus L. and strain 3Re4-18 from the endorhiza of Solanum tuberosum L. Studies have shown in vitro activity against the soil-borne fungi Verticillium dahliae Kleb., Rhizoctonia solani Kühn, and Sclerotinia sclerotiorum. Here, we announce and describe the complete genome sequence of S. plymuthica 3Rp8 consisting of a single circular chromosome of 5.5 Mb that encodes 4954 protein-coding and 108 RNA-only encoding genes and of S. plymuthica 3Re4-18 consisting of a single circular chromosome of 5.4 Mb that encodes 4845 protein-coding and 109 RNA-only encoding genes. The whole genome sequences and annotations are available in NCBI under the locus numbers CP012096 and CP012097, respectively. The genome analyses revealed genes putatively responsible for the promising plant growth promoting and biocontrol properties including predicting factors such as secretion systems, iron scavenging siderophores, chitinases, secreted proteases, glucanases and non-ribosomal peptide synthetases, as well as unique genomic islands.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.