July 7, 2019  |  

First complete genome sequence of Clostridium sporogenes DSM 795T, a nontoxigenic surrogate for Clostridium botulinum, determined using PacBio Single-Molecule Real-Time Technology.

The first complete genome sequence of Clostridium sporogenes DSM 795(T), a nontoxigenic surrogate for Clostridium botulinum, was determined in a single contig using the PacBio single-molecule real-time technology. The genome (4,142,990 bp; G+C content, 27.98%) included 86 sets of >1,000-bp identical sequence pairs and 380 tandem repeats. Copyright © 2015 Nakano et al.


July 7, 2019  |  

Enterobacter asburiae strain L1: complete genome and whole genome optical mapping analysis of a quorum sensing bacterium.

Enterobacter asburiae L1 is a quorum sensing bacterium isolated from lettuce leaves. In this study, for the first time, the complete genome of E. asburiae L1 was sequenced using the single molecule real time sequencer (PacBio RSII) and the whole genome sequence was verified by using optical genome mapping (OpGen) technology. In our previous study, E. asburiae L1 has been reported to produce AHLs, suggesting the possibility of virulence factor regulation which is quorum sensing dependent. This evoked our interest to study the genome of this bacterium and here we present the complete genome of E. asburiae L1, which carries the virulence factor gene virK, the N-acyl homoserine lactone-based QS transcriptional regulator gene luxR and the N-acyl homoserine lactone synthase gene which we firstly named easI. The availability of the whole genome sequence of E. asburiae L1 will pave the way for the study of the QS-mediated gene expression in this bacterium. Hence, the importance and functions of these signaling molecules can be further studied in the hope of elucidating the mechanisms of QS-regulation in E. asburiae. To the best of our knowledge, this is the first documentation of both a complete genome sequence and the establishment of the molecular basis of QS properties of E. asburiae.


July 7, 2019  |  

The identification of novel diagnostic marker genes for the detection of beer spoiling Pediococcus damnosus strains using the BlAst Diagnostic Gene findEr.

As the number of bacterial genomes increases dramatically, the demand for easy to use tools with transparent functionality and comprehensible output for applied comparative genomics grows as well. We present BlAst Diagnostic Gene findEr (BADGE), a tool for the rapid prediction of diagnostic marker genes (DMGs) for the differentiation of bacterial groups (e.g. pathogenic / nonpathogenic). DMG identification settings can be modified easily and installing and running BADGE does not require specific bioinformatics skills. During the BADGE run the user is informed step by step about the DMG finding process, thus making it easy to evaluate the impact of chosen settings and options. On the basis of an example with relevance for beer brewing, being one of the oldest biotechnological processes known, we show a straightforward procedure, from phenotyping, genome sequencing, assembly and annotation, up to a discriminant marker gene PCR assay, making comparative genomics a means to an end. The value and the functionality of BADGE were thoroughly examined, resulting in the successful identification and validation of an outstanding novel DMG (fabZ) for the discrimination of harmless and harmful contaminations of Pediococcus damnosus, which can be applied for spoilage risk determination in breweries. Concomitantly, we present and compare five complete P. damnosus genomes sequenced in this study, finding that the ability to produce the unwanted, spoilage associated off-flavor diacetyl is a plasmid encoded trait in this important beer spoiling species.


July 7, 2019  |  

An improved high-quality draft genome sequence of Carnobacterium inhibens subsp. inhibens strain K1(T).

Despite their ubiquity and their involvement in food spoilage, the genus Carnobacterium remains rather sparsely characterized at the genome level. Carnobacterium inhibens K1(T) is a member of the Carnobacteriaceae family within the class Bacilli. This strain is a Gram-positive, rod-shaped bacterium isolated from the intestine of an Atlantic salmon. The present study determined the genome sequence and annotation of Carnobacterium inhibens K1(T). The genome comprised 2,748,608 bp with a G?+?C content of 34.85 %, which included 2621 protein-coding genes and 116 RNA genes. The strain contained five contigs corresponding to presumptive plasmids of sizes: 19,036; 24,250; 26,581; 65,272; and 65,904 bp.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.